blade geometry
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 30)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
pp. 118-131
Author(s):  
M. V Pivovarova ◽  
V. A Besschetnov

At present, the process of designing a GTE involves a large amount of computational modeling. With the help of computational modeling, it is possible to predict a behavior of an engine part during engine operations before conducting experimental studies. For example, the numerical dynamic behavior analysis of compressor blades and prediction of dynamic stress levels during fluctuations in free modes are urgent problems. A high level of dynamic stress in the compressor blades in resonant modes can break a blade and stop an engine. In this paper, we propose a simple vibration stress estimation method for the compressor blades based on the calculation of natural frequencies and vibration forms. The method is based on a comparative analysis and scaling of stresses by the value of the total potential or kinetic energy. This estimation method is valid for local changes in the blade geometry, which do not lead to changes in the natural frequencies and vibration forms of the blades, assuming that the geometry change does not change the level of the aerodynamic excitation of the blade or its damping. At the stage of development or revision of the blade, a large number of variants of the blade geometry needs to be analyzed in order to reduce dynamic stresses. The proposed vibration stress estimation method has shown its high efficiency in developing and refining the geometry of the compressor blade. The vibration stress estimation method was tested using the rotor blade of a high-pressure compressor. As a result of the experimental study of the rotor blade, a high level of vibration stresses exceeding the permissible level was found for natural frequencies and vibration forms. To reduce the vibration stresses, measures were proposed to modify the geometry of the blade. For the modified blade geometry, the vibration stress estimation was performed with a prediction of the vibration stress values based on the manifested vibration forms. In order to verify the estimated vibration stress change, an experimental study of the modified blade was conducted. The vibration stress estimation method for the compressor blades was successfully verified.


Author(s):  
Manoj Kumar Chaudhary ◽  
◽  
S. Prakash ◽  

In this research work, the investigation and optimization of small horizontal axis wind turbine blade at low wind speed is pursued. The experimental blades were developed using the 3D printing additive manufacturing technique. The airfoils E210, NACA2412, S1223, SG6043, E216, NACA4415, SD7080, SD7033, S1210 and MAF were tested at the wind speed of 2-6 m/s. The airfoils and optimum blade geometry were investigated with the aid of the Xfoil software at Reynolds number of 100,000. The initial investigation range included tip speed ratios from 3 to 10, solidity from 0.0431 – 0.1181 and angle of attacks from 2o to 20o. Later on these parameters were varied in MATLAB and Xfoil software for optimization and investigation of the power coefficient, lift coefficient, drag coefficient and lift to drag ratio. The cut-in wind speed of the rotors was 2 and 2.5 m/s with the winglet-equipped blades and without winglets. It was found that the E210, SG6043, E216 NACA4415 and MAF airfoil displayed better performance than the NACA 2412, S1223, SD7080, S1210 & SD7003 for the geometry optimized for the operating conditions and manufacturing method described.


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 271
Author(s):  
Hengtao Shi

The blade geometry design method is an important tool to design high performance axial compressors, expected to have large design space while limiting the quantity of design variables to a suitable level for usability. However, the large design space tends to increase the quantity of the design variables. To solve this problem, this paper utilizes the normalization and subsection techniques to develop a geometry design method featuring flexibility and local adjustability with limited design variables for usability. Firstly, the blade geometry parameters are defined by using the normalization technique. Then, the normalized camber angle f1(x) and thickness f2(x) functions are proposed with subsection techniques used to improve the design flexibility. The setting of adjustable coefficients acquires the local adjustability of blade geometry. Considering the usability, most of the design parameters have clear, intuitive meanings to make the method easy to use. To test this developed geometry design method, it is applied in the design of a transonic, two flow-path axial fan component for an aero engine. Numerical simulations indicate that the designed transonic axial fan system achieves good efficiency above 0.90 for the entire main-flow characteristic and above 0.865 for the bypass flow characteristic, while possessing a sufficiently stable operation range. This indicates that the developed design method has a large design space for containing the good performance compressor blade of different inflow Mach numbers, which is a useful platform for axial-flow compressor blade design.


Author(s):  
R.A. Popov ◽  
◽  
I.L. Abramov ◽  

The interaction of a knife with a stalk of industrial hemp in the process of unsupported cut is described. An analytical dependence of the critical cutting force on the physicomechanical properties of the stem and blade geometry is obtained. The factors influencing the shape of the cutting tooth are analyzed. The profiles of cutting segments have been developed taking into account the peculiarities of the structure of the industrial hemp stem.


2021 ◽  
Author(s):  
Tobias Werder ◽  
Karl Neuh\xe4user ◽  
Clara Friederike Behnsen ◽  
Robert Liebich ◽  
Rudibert King

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4045
Author(s):  
David Menéndez Arán ◽  
Ángel Menéndez

A design method was developed for automated, systematic design of hydrokinetic turbine rotor blades. The method coupled a Computational Fluid Dynamics (CFD) solver to estimate the power output of a given turbine with a surrogate-based constrained optimization method. This allowed the characterization of the design space while minimizing the number of analyzed blade geometries and the associated computational effort. An initial blade geometry developed using a lifting line optimization method was selected as the base geometry to generate a turbine blade family by multiplying a series of geometric parameters with corresponding linear functions. A performance database was constructed for the turbine blade family with the CFD solver and used to build the surrogate function. The linear functions were then incorporated into a constrained nonlinear optimization algorithm to solve for the blade geometry with the highest efficiency. A constraint on the minimum pressure on the blade could be set to prevent cavitation inception.


2021 ◽  
Vol 8 (7) ◽  
pp. 210779
Author(s):  
Asif Shahriar Nafi ◽  
Krishnamoorthy Krishnan ◽  
Anup K. Debnath ◽  
Erin E. Hackett ◽  
Roi Gurka

Rotor blades can be found in many engineering applications, mainly associated with converting energy from fluids to work (or electricity). Rotor blade geometry is a key factor in the mechanical efficiency of the energy conversion process. For example, wind turbines' performance directly depends on the blade geometry and the wake flow formed behind them. We suggest to use a bioinspired blade based on the common swift wing. Common swift ( Apus apus ) is known to be a long-distance flyer, able to stay aloft for long periods of time by maintaining high lift and low drag. We study the near-wake flow characteristics of a freely rotating rotor with swept blades and its aerodynamic loads. These are compared with a straight-bladed rotor. The experiments were conducted in a water flume using particle image velocimetry (PIV) technique. Both blades were studied for four different flow speeds with freestream Reynolds numbers ranging from 23 000 to 41 000. Our results show that the near wake developed behind the swept-back blade was significantly different from the straight blade configuration. The near wake developed behind the swept-back blade exhibited relatively lower momentum loss and suppressed turbulent activity (mixing and production) compared with the straight blade. Comparing the aerodynamic characteristics, though the swept-back blade generated relatively less lift than the straight blade, the drag was relatively low. Thus, the swept-back blade produced two to three times higher lift-to-drag ratio than the straight blade. Based on these observations, we suggest that, with improved design optimizations, using the swept-back configuration in rotor blades (specifically used in wind turbines) can improve mechanical efficiency and reduce the energy loss during the conversion process.


Author(s):  
Manoj Kumar Chaudhary ◽  
S Prakash

This paper aims to optimize and investigate the small horizontal axis wind turbine blades at low wind speed. The objective of this research work is to explain the design method based on BEM theory for 0.2 m blade rotors with constant, variable and linear chord with twisted blade geometry. MATLAB and Xfoil programs were used for BEM principles and wind turbines with SG6043 airfoil. A numerical and experimental study was carried out to examine the impact of rotor solidity from 0.057 to 0.207 and the number of blades from 3 to 7 in this research work. The experimental blades were developed by using the 3D printing additive manufacturing technique. The investigation of the rotors has been done in an open wind tunnel, at wind speed from 2 to 8 m/s. The initial investigation range included tip speed ratios from 2 to 8, and angle of attacks from 2 to 20°. Later on these parameters were varied in Matlab and Xfoil software optimization and investigation of the power coefficient, blade geometry, number of blades and blade pitch angle. It was found that the rotor solidity 0.055 to 0.085 displayed better performances.


Sign in / Sign up

Export Citation Format

Share Document