hot jupiter
Recently Published Documents


TOTAL DOCUMENTS

469
(FIVE YEARS 159)

H-INDEX

58
(FIVE YEARS 14)

2022 ◽  
Vol 163 (2) ◽  
pp. 53
Author(s):  
Nicholas Saunders ◽  
Samuel K. Grunblatt ◽  
Daniel Huber ◽  
Karen A. Collins ◽  
Eric L. N. Jensen ◽  
...  

Abstract While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M ⋆ = 1.53 ± 0.12 M ⊙, R ⋆ = 2.90 ± 0.14 R ⊙) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R p = 1.017 ± 0.051 R J and mass of M p = 0.65 ± 0.16 M J . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution.


Author(s):  
L. Fossati ◽  
G. Guilluy ◽  
I. F. Shaikhislamov ◽  
I. Carleo ◽  
F. Borsa ◽  
...  
Keyword(s):  

2021 ◽  
Vol 163 (1) ◽  
pp. 32
Author(s):  
Lisa Dang ◽  
Taylor J. Bell ◽  
Nicolas B. Cowan ◽  
Daniel Thorngren ◽  
Tiffany Kataria ◽  
...  

Abstract We report Spitzer full-orbit phase observations of the eccentric hot Jupiter XO-3b at 3.6 and 4.5 μm. Our new eclipse depth measurements of 1770 ± 180 ppm at 3.6 μm and 1610 ± 70 ppm at 4.5 μm show no evidence of the previously reported dayside temperature inversion. We also empirically derive the mass and radius of XO-3b and its host star using Gaia DR3's parallax measurement and find a planetary mass M p = 11.79 ± 0.98 M Jup and radius R p = 1.295 ± 0.066 R Jup. We compare our Spitzer observations with multiple atmospheric models to constrain the radiative and advective properties of XO-3b. While the decorrelated 4.5 μm observations are pristine, the 3.6 μm phase curve remains polluted with detector systematics due to larger amplitude intrapixel sensitivity variations in this channel. We focus our analysis on the more reliable 4.5 μm phase curve and fit an energy balance model with solid body rotation to estimate the zonal wind speed and the pressure of the bottom of the mixed layer. Our energy balance model fit suggests an eastward equatorial wind speed of 3.13 − 0.83 + 0.26 km s−1, an atmospheric mixed layer down to 2.40 − 0.16 + 0.92 bars, and a Bond albedo of 0.106 − 0.106 + 0.008 . We assume that the wind speed and mixed layer depth are constant throughout the orbit. We compare our observations with 1D planet-averaged model predictions at apoapse and periapse and 3D general circulation model predictions for XO-3b. We also investigate the inflated radius of XO-3b and find that it would require an unusually large amount of internal heating to explain the observed planetary radius.


Nature ◽  
2021 ◽  
Author(s):  
Michael R. Line ◽  
Matteo Brogi ◽  
Jacob L. Bean ◽  
Siddharth Gandhi ◽  
Joseph Zalesky ◽  
...  

2021 ◽  
Vol 163 (1) ◽  
pp. 8
Author(s):  
Ben W. P. Lew ◽  
Dániel Apai ◽  
Yifan Zhou ◽  
Mark Marley ◽  
L. C. Mayorga ◽  
...  

Abstract Many brown dwarfs are on ultrashort-period and tidally locked orbits around white dwarf hosts. Because of these small orbital separations, the brown dwarfs are irradiated at levels similar to hot Jupiters. Yet, they are easier to observe than hot Jupiters because white dwarfs are fainter than main-sequence stars at near-infrared wavelengths. Irradiated brown dwarfs are, therefore, ideal hot Jupiter analogs for studying the atmospheric response under strong irradiation and fast rotation. We present the 1.1–1.67 μm spectroscopic phase curve of the irradiated brown dwarf (SDSS1411-B) in the SDSS J141126.20 + 200911.1 brown dwarf–white dwarf binary with the near-infrared G141 grism of the Hubble Space Telescope Wide Field Camera 3. SDSS1411-B is a 50M Jup brown dwarf with an irradiation temperature of 1300 K and has an orbital period of 2.02864 hr. Our best-fit model suggests a phase-curve amplitude of 1.4% and places an upper limit of 11° for the phase offset from the secondary eclipse. After fitting the white dwarf spectrum, we extract the phase-resolved brown dwarf emission spectra. We report a highly wavelength-dependent day–night spectral variation, with a water-band flux variation of about 360% ± 70% and a comparatively small J-band flux variation of 37% ± 2%. By combining the atmospheric modeling results and the day–night brightness temperature variations, we derive a pressure-dependent temperature contrast. We discuss the difference in the spectral features of SDSS1411-B and hot Jupiter WASP-43b, as well as the lower-than-predicted day–night temperature contrast of J4111-BD. Our study provides the high-precision observational constraints on the atmospheric structures of an irradiated brown dwarf at different orbital phases.


2021 ◽  
Vol 162 (6) ◽  
pp. 271
Author(s):  
Guangwei Fu ◽  
Drake Deming ◽  
Erin May ◽  
Kevin Stevenson ◽  
David K. Sing ◽  
...  

Abstract Planets are like children with each one being unique and special. A better understanding of their collective properties requires a deeper understanding of each planet. Here we add the transit and eclipse spectra of hot-Jupiter WASP-74b into the ever growing data set of exoplanet atmosphere spectral library. With six transits and three eclipses using the Hubble Space Telescope and Spitzer Space Telescope (Spitzer), we present the most complete and precise atmospheric spectra of WASP-74b. We found no evidence for TiO/VO nor super-Rayleigh scattering reported in previous studies. The transit shows a muted water feature with strong Rayleigh scattering extending into the infrared. The eclipse shows a featureless blackbody-like WFC3/G141 spectrum and a weak methane absorption feature in the Spitzer 3.6 μm band. Future James Webb Space Telescope follow-up observations are needed to confirm these results.


2021 ◽  
Author(s):  
Joshua Lothringer ◽  
David Sing ◽  
Zafar Rustamkulov ◽  
Hannah Wakeford ◽  
Kevin Stevenson ◽  
...  

Abstract Aerosols have been found to be nearly ubiquitous in substellar atmospheres. Evidence for the composition and conditions whereby these aerosols form remains limited (Cushing et al. 2006, Saumon & Marley 2008, Burningham 2021). Theoretical models and observations of muted spectral features suggest that silicate clouds play an important role in exoplanets between at least 950 and 2,100 K (Gao et al. 2020). However, some giant planets are thought to be hot enough to avoid condensation of even the most refractory elements (Lothringer et al. 2018, Kitzmann et al. 2018). Here, we present the near-UV transmission spectrum of an ultra-hot Jupiter WASP-178b (~2,450 K), that exhibits significant NUV absorption indicating the presence of gaseous refractory elements in the middle atmosphere. This short-wavelength absorption is among the largest spectral features ever observed in an exoplanet in terms of atmospheric scale heights. Bayesian retrievals indicate the broadband UV feature on WASP-178b is caused by refractory elements including silicon and magnesium bearing species, which are the precursors to condensate clouds at lower temperatures. Silicon in particular has not been detected in exoplanets before, but the presence of SiO in WASP-178b is consistent with theoretical expectation as the dominant Si-bearing species at high temperatures. These observations allow us to re-interpret previous observations of HAT-P-41b and WASP-121b to suggest that silicate cloud formation begins on exoplanets with equilibrium temperatures between 1,950 and 2,350 K.


2021 ◽  
Vol 162 (6) ◽  
pp. 240
Author(s):  
Samuel W. Yee ◽  
Joshua N. Winn ◽  
Joel D. Hartman

Abstract Hot Jupiters are a rare and interesting outcome of planet formation. Although more than 500 hot Jupiters (HJs) are known, most of them were discovered by a heterogeneous collection of surveys with selection biases that are difficult to quantify. Currently, our best knowledge of HJ demographics around FGK stars comes from the sample of ≈40 objects detected by the Kepler mission, which have a well-quantified selection function. Using the Kepler results, we simulate the characteristics of the population of nearby transiting HJs. A comparison between the known sample of nearby HJs and simulated magnitude-limited samples leads to four conclusions. (1) The known sample of HJs appears to be ≈75% complete for stars brighter than Gaia G ≤ 10.5, falling to ≲50% for G ≤ 12. (2) There are probably a few undiscovered HJs with host stars brighter than G ≈ 10 located within 10° of the Galactic plane. (3) The period and radius distributions of HJs may differ for F-type hosts (which dominate the nearby sample) and G-type hosts (which dominate the Kepler sample). (4) To obtain a magnitude-limited sample of HJs that is larger than the Kepler sample by an order of magnitude, the limiting magnitude should be approximately G ≈ 12.5. This magnitude limit is within the range for which NASA’s Transiting Exoplanet Survey Satellite can easily detect HJs, presenting the opportunity to greatly expand our knowledge of hot-Jupiter demographics.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 422
Author(s):  
Andrey Zhilkin ◽  
Dmitri Bisikalo

A numerical model description of a hot Jupiter extended envelope based on the approximation of multi-component magnetic hydrodynamics is presented. The main attention is focused on the problem of implementing the completed MHD stellar wind model. As a result, the numerical model becomes applicable for calculating the structure of the extended envelope of hot Jupiters not only in the super-Alfvén and sub-Alfvén regimes of the stellar wind flow around and in the trans-Alfvén regime. The multi-component MHD approximation allows the consideration of changes in the chemical composition of hydrogen–helium envelopes of hot Jupiters. The results of calculations show that, in the case of a super-Alfvén flow regime, all the previously discovered types of extended gas-dynamic envelopes are realized in the new numerical model. With an increase in magnitude of the wind magnetic field, the extended envelope tends to become more closed. Under the influence of a strong magnetic field of the stellar wind, the envelope matter does not move along the ballistic trajectory but along the magnetic field lines of the wind toward the host star. This corresponds to an additional (sub-Alfvénic) envelope type of hot Jupiters, which has specific observational features. In the transient (trans-Alfvén) mode, a bow shock wave has a fragmentary nature. In the fully sub-Alfvén regime, the bow shock wave is not formed, and the flow structure is shock-less.


Nature ◽  
2021 ◽  
Vol 598 (7882) ◽  
pp. 580-584
Author(s):  
Michael R. Line ◽  
Matteo Brogi ◽  
Jacob L. Bean ◽  
Siddharth Gandhi ◽  
Joseph Zalesky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document