unsteady lift
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 2)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 88
Author(s):  
Chedhli Hafien ◽  
Abdellatif Messaoudi

To understand the nonlinear interaction between unsteady aerodynamic forces and the kinematics of structures, we theoretically and numerically investigated the characteristics of lift coefficients produced by a flapping thin flat plate controlled by the rotation axis position. The flat plate was placed in a 2-D incompressible flow at a very low Reynolds number (Re = 300). We showed that the behavior of the unsteady aerodynamic forces suggests the existence of a limit cycle. In this context, we developed a Reduced Order Model (ROM) by resolving the modified van der Pol oscillator using the Taylor development method and computational fluid dynamics (CFD) solutions. A numerical solution was obtained by integrating the differential equation of the modified van der Pol oscillator using the fourth-order Runge–Kutta method (RK4). The model was validated by comparing this solution with the reformulated equation of the added mass lift coefficient. Using CFD and ROM solutions, we analyzed the dependency of the unsteady lift coefficient generation on the kinematics of the flapping flat plate. We showed that the evolution of the lift coefficient is influenced by the importance of the rotation motion of the Leading Edge (LE) or Trailing Edge (TE), according to the position of the rotation axis. Indeed, when the rotation axis is moved towards the LE, the maximum and the minimum values of the lift coefficient are proportional to the downward and upward motions respectively of the TE and the rotation axis. However, when the rotation axis is moved towards the TE, the maximum and the minimum values of the lift coefficient are proportional to the downward and upward motions respectively of the LE and the rotation axis.


2021 ◽  
Author(s):  
Mohamed Yehia Zakaria

In this chapter, a set of analytical aerodynamic models, based on potential flow, that can be used to predict the unsteady lift response during pitching maneuvers are presented and assessed. The result examines the unsteady lift coefficients experienced by a flat plate in high-amplitude pitch ramp motion. The pitch ramps are chosen based on two ramp pitch maneuvers of a maximum amplitudes of 25 and 45 degrees starting from zero degree. The aim is investigate the use of such classical models in predicting the lift dynamics compared to a full physical-based model. Among all classical methods used, the unsteady vortex lattice method (without considering the leading edge vortex) is found to be a very good predictor of the motion lift dynamic response for the 25° ramp angle case. However, at high pitch maneuvers (i.e.,the 45° ramp angle case), could preserve the response pattern with attenuated amplitudes without high computational burden. These mathematical analytical models presented in this chapter can be used to obtain a fast estimate for aircraft unsteady lift during pitch maneuvers instead of high fidelity models, especially in the early design phases.


2020 ◽  
Vol 908 ◽  
Author(s):  
Ruwei Ma ◽  
Yang Yang ◽  
Mingshui Li ◽  
Qiusheng Li

Abstract


2020 ◽  
Vol 2020 (0) ◽  
pp. 0052
Author(s):  
Yuya Shikami ◽  
Toshihiro Haniu ◽  
Takanobu Yamada ◽  
Shin-ichi Morita ◽  
Hiroaki Hasegawa

Author(s):  
Chong Sun ◽  
Tian Tian ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

Reduced-order models are widely used in aerospace engineering. A model for unsteady aerodynamics is desirable for designing the blades of wind turbines. Recently, sparse identification of nonlinear dynamics with control was introduced to identify the parameters of an input-output dynamical system. In this paper, two models for attached flows and one for separated flows are identified through this technique. For the unsteady lift of the attached flow, Model I is a linear model that presents the dynamic change of an unsteady lift to a static lift. Model II was built based on Model I in order to obtain a more general system with closed-loop control. It has a first-order inert element that delays the overall input of the static lift. The Model II results replicate the training data very well and give an accurate prediction of other oscillating cases with different oscillation amplitudes, reduced frequency or mean angle of attack. For the unsteady lift of the separated flow, Model III is identified as a nonlinear model, which also has a first-order inert element. This model captures the nonlinear aerodynamics of the separated flow and replicates the training cases well. In addition, the prediction of Model III has good agreement with the numerical results.


Aerospace ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 60
Author(s):  
Julia A. Cole ◽  
Mark D. Maughmer ◽  
Goetz Bramesfeld ◽  
Michael Melville ◽  
Michael Kinzel

An unsteady formulation of the Kutta–Joukowski theorem has been used with a higher-order potential flow method for the prediction of three-dimensional unsteady lift. This study describes the implementation and verification of the approach in detail sufficient for reproduction by future developers. Verification was conducted using the classical responses to a two-dimensional airfoil entering a sharp-edged gust and a sinusoidal gust with errors of less than 1% for both. The method was then compared with the three-dimensional unsteady lift response of a wing as modeled in two unsteady vortex-lattice methods. Results showed agreement in peak lift coefficient prediction to within 1% and 7%, respectively, and mean agreement within 0.25% for the full response.


Author(s):  
Jun Ikeda ◽  
Javier Sanchez Rios ◽  
Naoshi Kuratani ◽  
Kenta Ogawa ◽  
Makoto Tsubokura

Abstract In this study, unsteady flow simulations using a large-eddy simulation are conducted to analyze vehicle aerodynamics. The objective is to investigate flow structures that cause unsteady lift fluctuations potentially affecting the drivability of a vehicle. In addition, the dependence on the yaw angle of the incoming flow yaw angle is studied. The target model is a sedan-type vehicle that includes a complex underbody geometry and engine compartment. The model is based on production CAD drawings. The yaw angle of the incoming flow is set to 0°, 3°, and 5°. The simulation results are analyzed by several post-processing methods, such as root-mean-square of the transient pressure field, power spectral density of the lift force, and dynamic mode decomposition method to extract the flow features associated with the unsteady lift fluctuation. It is concluded that the aerodynamic fluctuation that may affect a vehicle’s vertical stability is concentrated on the rear tire and bumper area. In addition, when the yaw angle of the incoming flow increases, the fluctuation of the lift and the disturbance of flow structures are enhanced.


Sign in / Sign up

Export Citation Format

Share Document