milk urea nitrogen
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 30)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
pp. 59-67
Author(s):  
Roumiana Tsenkova ◽  
Jelena Muncan

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 171-171
Author(s):  
Matthew R Beck ◽  
Cameron Marshall ◽  
Konagh Garrett ◽  
Andrew P Foote ◽  
Ronaldo Vibart ◽  
...  

Abstract Urine nitrogen excretion (g/d; UN) represent a significant environmental impact for both confinement feeding and pastoral based dairy systems. It is difficult to measure UN directly due to animal handling and labor requirements, especially in forage based production systems. The currently available milk urea nitrogen (MUN) equations have been shown to overestimate UN excretion of grazing dairy cows compared with an equation using urinary creatinine and UN concentration, indicating that diet may alter the relationship between MUN and UN. This potential was explored using data retrieved (treatment means: n = 69 and 27 for fresh forage [FF] and total mixed ration [TMR] fed cattle, respectively) from the literature and new data obtained from dairy cows fed FF (n = 15) in metabolism crates was used to test the new equations. The TMR data from literature was further split into a training set (to develop the model; n = 53) and a test set (to validate the model; n = 16). There was an interaction for diet type (P < 0.01) where UN (g/d) = 0.023 × MUN (mg/dL) × live-weight (kg, LW) for TMR fed cattle, (similar to a pre-established equation); however, UN (g/d) = 0.015 × MUN × LW for FF fed cattle. For FF based equations, the New MUN equation and the creatinine equation showed good precision and accuracy (Lin’s CCC = 0.79 and 0.74, respectively) and adequate predictive ability (RMSEP = 29.8 and 35.9, respectively). The new MUN equation for TMR fed cattle showed excellent accuracy and precision (Lin’s CCC = 0.87) with good predictive ability (RMSEP = 24.3) for UN excretion (observed mean = 216.5 g/d). The new equations generated during this meta-analysis provide promising predictive ability of UN excretion, which can be used for management considerations, future research, and policy making.


2021 ◽  
Vol 13 (18) ◽  
pp. 10451
Author(s):  
Cameron J. Marshall ◽  
Pablo Gregorini

There is increasing societal concern surrounding the environmental externalities generated from ruminant production systems. Traditional responses to address these externalities have often been system-based. While these approaches have had promising results, they have served to view the animal as a problem that needs solving, rather than as a potential solution. This review attempts to answer the question: can we breed animals that are more environmentally friendly to address environmental outcomes and satisfy consumer demand? This was done by exploring the literature of examples where animals have been specifically bred to reduce their environmental impact. The use of milk urea nitrogen breeding values has been demonstrated as a tool allowing for selective breeding of dairy cows to reduce nitrogen losses. Low milk urea nitrogen breeding values have been documented to result in reduced urinary nitrogen concentrations per urination event, which ultimately reduces the level of nitrogen that will be lost from the system. The ability to breed for low methane emissions has also shown positive results, with several studies demonstrating the heritability and subsequent reductions in methane emissions via selective breeding programs. Several avenues also exist where animals can be selectively bred to increase the nutrient density of their final product, and thus help to address the growing demand for nutrient-dense food for a growing human population. Animal-based solutions are permanent, cumulative, and often more cost-effective than system-based approaches. With continuing research and interest in breeding for more positive environmental outcomes, the animal can now start to be viewed as a potential solution to many of the issues faced by ruminant production systems, rather than simply being seen as a problem.


2021 ◽  
Vol 13 (17) ◽  
pp. 9827
Author(s):  
Martín Correa-Luna ◽  
Daniel Donaghy ◽  
Peter Kemp ◽  
Michael Schutz ◽  
Nicolás López-Villalobos

Milk urea nitrogen content is moderately heritable and is phenotypically related to urine nitrogen (UN). Based on this relationship, it has been suggested that genetic selection for lower milk urea nitrogen in grazing dairy cows could decrease UN concentration thereby reducing nitrogen excretions into the ground. The objective of this study was to compare the nitrogen use efficiency (NUE) and excretion in grazing cows with high and low milk urea nitrogen breeding values (MUNBV) in two farms of contrasting farming intensity. On the high-intensity farm (HIF) 68 and 70 cows with low and high MUNBV, respectively, were fed higher levels of supplementation and milked twice-daily, while on the low-intensity farm (LIF) 82 and 86 cows with low and high MUNBV, respectively, were fed lower levels of supplementation milked once-daily. Nitrogen use efficiency (g/g) was calculated as the ratio of daily milk N to daily N intake. Daily N intake (g/day) was derived from feed intake estimates based on energy requirements. The UN (g/day) was estimated by back-calculation from dietary N and subtracting milk N, faecal N, and N retained in body tissues. Irrespective of farm, cows with low MUNBV had significantly lower MY and milk urea nitrogen (p < 0.001) but this was not linked to significantly less UN. In the LIF, cows with low MUNBV had lower NUE (p < 0.001) than cows with high MUNBV, and this was explained by the reduced protein yield (p < 0.001). Selecting cows for low MUNBV was not an effective tool to reduce N losses and to increase the NUE in two dairy farms of contrasting farming intensity.


2021 ◽  
Vol 65 (3) ◽  
pp. 30-39
Author(s):  
I. Maskaľová ◽  
V. Vajda

Abstract The aim of this study was to evaluate the effects of nutrition on the milk urea nitrogen (MUN) concentration; on the transformation of N in the farm’s conditions; and there-by allow the milk urea nitrogen concentration to serve as a tool to maximize the protein nutrition and the metabolism of the cows. The relations evaluated by linear or multiple regression confirmed that the highest nutritional effects of the crude protein (CP) on the MUN concentration, which represented a 69.3 % variation in the MUN content. According to the CP content in the total mix ration (TMR) and MUN content (3150 milk samples) under farm conditions, a regression relationship was determined for the estimated of MUN (mg.dl–1) = –13.2 + 0.16 × CP (g.kg–1 dry matter). For multiple regression, the rate of variation expressed by this relationship increased to 72 for nutrient content and 78.3 % for nutrient intake in the TMR. The efficiency of nitrogen utilization (ENU) determined by calculations based on the MUN content according to the regression equations represented a negative correlation (P < 0.0001; R2 = 0.854) with respect to the CP content in the TMR and that the increased CP content by 1 % in the range of 14 to 18 % in the TMR decreased the ENU by 1.48 %. Validation of the models for prediction of nitrogen transformation (ENU) for practical application on the farms determined the best equation, which used the available data from the routine analysis of Breeding services of Slovakia. After taking into consideration of our breeding conditions, it was confirmed that the equation of ENU had taken into account the MUN, in addition to the amount of the milk produced.


Author(s):  
C.J. Marshall ◽  
M.R. Beck ◽  
K. Garrett ◽  
A.E. Fleming ◽  
G.K. Barrell ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Xiaomei Sun ◽  
Yan Liang ◽  
Qisong Gao ◽  
Jiahe Guo ◽  
Cheng Tang ◽  
...  

Abstract The current study reports the identification of previously undiscovered single-nucleotide polymorphisms (SNPs) in the bovine AGPAT3 gene and further investigates their associations with milk production traits. Our results demonstrate that the major allele C of the SNP g.12264 C > T is positively correlated with test-day milk yield, protein percentage and 305-day milk yield. Importantly, in silico analysis showed that the C/T transition at this locus gives rise to two new transcription factor binding sites (TFBS), E2F1 and Nkx3-2. Polymorphism g.18658 G > A was the only SNP associated with milk urea nitrogen (MUN) with the G allele related to an increase in milk urea nitrogen as well as fat percentage. The GG genotype of SNP g.28731 A > G was associated with the highest fat and protein percentage and lowest 305-day milk yield and somatic cell score (SCS). The association between AGPAT3 locus and milk production traits could be utilized in marker-assisted selection for the genetic improvement of milk production traits and, probably in conjunction with other traits, for selection to improve fitness of dairy cattle.


Sign in / Sign up

Export Citation Format

Share Document