cosmic ray interactions
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Pei-pei Zhang ◽  
Bing-qiang Qiao ◽  
Qiang Yuan ◽  
Shu-wang Cui ◽  
Yi-qing Guo

Author(s):  
Richard S. Ellis ◽  
Alan A. Watson

For over 50 years Arnold Wolfendale was an international leader in the fields of cosmic ray and gamma ray astronomy, making many seminal contributions. His extensive studies of the muon particle culminated in 1965 when, using an installation in the Kolar Gold Mine in India, he played a major role in the first detection of the neutrinos associated with muons produced in the atmosphere. His interests in the origin of high-energy cosmic rays were extensive and required the development of a better understanding of particle physics at energies beyond those accessible at accelerators. Recognizing that high-energy gamma rays can arise from cosmic ray interactions with the interstellar gas, he used early satellite data to argue for the galactic origin of intermediate-energy cosmic rays and for studies of the distribution of molecular hydrogen. His interests in astronomy, which he firmly held to be a branch of physics, drove him to develop a world-class activity in this area at Durham University. This achievement, in part, led to him being appointed Astronomer Royal in 1991. He used this position, and his roles as president of the Royal Astronomical Society, the Institute of Physics and the European Physical Society, to lobby tirelessly for more governmental support for science. He was an early advocate for improvements in the public understanding of science, leading by example. In his later years Arnold's interests extended to cosmology and horology, and he argued against a possible connection between cosmic rays and global warming. A brilliant communicator, Arnold gave a huge number of lectures each year to general audiences, almost to the end of his life.


Author(s):  
Alessandro De Angelis ◽  
Vincent Tatischeff ◽  
Andrea Argan ◽  
Søren Brandt ◽  
Andrea Bulgarelli ◽  
...  

AbstractThe energy range between about 100 keV and 1 GeV is of interest for a vast class of astrophysical topics. In particular, (1) it is the missing ingredient for understanding extreme processes in the multi-messenger era; (2) it allows localizing cosmic-ray interactions with background material and radiation in the Universe, and spotting the reprocessing of these particles; (3) last but not least, gamma-ray emission lines trace the formation of elements in the Galaxy and beyond. In addition, studying the still largely unexplored MeV domain of astronomy would provide for a rich observatory science, including the study of compact objects, solar- and Earth-science, as well as fundamental physics. The technological development of silicon microstrip detectors makes it possible now to detect MeV photons in space with high efficiency and low background. During the last decade, a concept of detector (“ASTROGAM”) has been proposed to fulfil these goals, based on a silicon hodoscope, a 3D position-sensitive calorimeter, and an anticoincidence detector. In this paper we stress the importance of a medium size (M-class) space mission, dubbed “ASTROMEV”, to fulfil these objectives.


2021 ◽  
Author(s):  
Pedro De la Torre Luque ◽  
Daniele Gaggero ◽  
M. Nicola Mazziotta

2021 ◽  
Author(s):  
Anirvan Shukla ◽  
Amaresh Datta ◽  
Philip von Doetinchem ◽  
Diego-Mauricio Gomez-Coral ◽  
Carina Kanitz

2021 ◽  
Vol 914 (2) ◽  
pp. 91
Author(s):  
Alina Kochocki ◽  
Volodymyr Takhistov ◽  
Alexander Kusenko ◽  
Nathan Whitehorn

2021 ◽  
Vol 913 (1) ◽  
pp. 52
Author(s):  
Ellis R. Owen ◽  
Alvina Y. L. On ◽  
Shih-Ping Lai ◽  
Kinwah Wu

2021 ◽  
Author(s):  
Marie Bergelin ◽  
Jaakko Putkonen ◽  
Greg Balco ◽  
Dan Morgan ◽  
Ronald K. Matheney ◽  
...  

<p>We have discovered and cored a massive ice mass buried underneath a meter of glacial debris in Ong Valley, Antarctica, which we report here to consist of two stacked ice bodies dated at >2 Ma. Glacial ice is known to be a great archive of atmospheric gasses, chemical compounds, and airborne particles. An ice mass of such antiquity, as reported here, may reveal information about our past which is otherwise unknown.</p><p>We determine the age of the ice directly by dating the dirt suspended within the ice and by dating the till layer covering the ice using cosmogenic nuclide: <sup>10</sup>Be, <sup>26</sup>Al, and <sup>21</sup>Ne. These cosmogenic nuclides are produced by cosmic-ray interactions with minerals near the Earth’s surface, and in this case in suspended dirt embedded in the ice. As the production rate of cosmogenic nuclides decreases rapidly with increasing depth below the Earth’s surface, the cosmogenic nuclide concentration profile yields information about the exposure history and further aid to constrain geological processes such as sublimation rates, and surface erosion rates. We further compare the cosmogenic nuclide model results with mapped glacial moraines adjacent to the current ice, and stable water isotope analysis throughout the core in order to explore the unique history that these two stacked ice masses have.</p><p>We find the uppermost section of this buried ice mass to be >2 Ma old. Large variation of cosmogenic nuclide concentrations downcore and stable water isotopes, suggests that the deepest section of the ice core may belong to a separate, older ice mass that has previously been exposed at the surface. Lateral moraines and measurements of cosmogenic nuclides in glacial debris further up valley suggest that this deeper, older ice may be >2.6 Ma old, and was most likely buried during glacial advancement into Ong Valley < 4 Ma ago.</p>


Sign in / Sign up

Export Citation Format

Share Document