hydride elimination
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 36)

H-INDEX

40
(FIVE YEARS 3)

Synthesis ◽  
2022 ◽  
Author(s):  
Takashi Nishikata ◽  
Tom Sheppard ◽  
Naoki Tsuchiya

The Suzuki-Miyaura coupling is extremely useful to construct Csp2-Csp2 carbon bonds. On the other hand, Csp2-Csp3 coupling reactions are do not work well, and tert-alkylative Suzuki-Miyaura coupling is particularly challenging due to problematic oxidative addition and beta-hydride elimination side reactions. In this short review, we will introduce recent examples of tert-alkylative Suzuki-Miyaura couplings with tert-alkyl electrophiles or -boron reagents. The review will mainly focus on catalyst and product structures and the proposed mechanisms .


Author(s):  
J. Haydée Merino ◽  
Jesús Bernad ◽  
Xavier Solans-Monfort

AbstractLewis acids increase the catalytic activity of classical heterogeneous catalysts and molecular d0 tungsten oxo alkylidenes in a variety of olefin metathesis processes. The formation of labile adducts between the metal complex and the Lewis acid has been observed experimentally and suggested to be involved in the catalyst activity increase. In this contribution, DFT (M06) calculations have been performed to determine the role of Lewis acids on catalyst activity, Z-/E- selectivity and stability by comparing three W(E)(CHR)(2,5-dimethylpyrrolide)(O-2,6-dimesithylphenoxide) (E = oxo, imido or oxo-Lewis acid adduct) alkylidenes. Results show that the formation of the alkylidene—Lewis acid adducts influences the reactivity of tungsten oxo alkylidenes due to both steric and electronic effects. The addition of the Lewis acid on the E group increases its bulkiness and this decreases catalyst Z-selectivity. Moreover, the interaction between the oxo ligand and the Lewis acid decreases the donating ability of the former toward the metal. This is important when the oxo group has either a ligand in trans or in the same plane that is competing for the same metal d orbitals. Therefore, the weakening of oxo donating ability facilitates the cycloaddition and cycloreversion steps and it stabilizes the productive trigonal bipyramid metallacyclobutane isomer. The two factors increase the catalytic activity of the complex. The electron donating tuneability by the coordination of the Lewis acid also applies to catalyst deactivation and particularly the key β-hydride elimination step. In this process, the transition states show a ligand in pseudo trans to the oxo. Therefore, the presence of the Lewis acid decreases the Gibbs energy barrier significantly. Overall, the optimization of the E group donating ability in each step of the reaction makes tungsten oxo alkylidenes more reactive and this applies both for the catalytic activity and catalyst deactivation.


2021 ◽  
Author(s):  
◽  
Sarah Amy Hoyte

<p>The coordination chemistry of the cyclopropyl-substituted alkenes, bicyclopropylidene (BCP) and methylenecyclopropane (MCP), with platinum was explored. A range of complexes with ŋ²-alkene ligands were synthesised by the displacement of a ligand, typically ethene, from a precursor complex. These complexes are [Pt(L)(P—P)] (L = BCP, MCP; P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂, ᵗBu₂PCH₂(o-C₆H₄)₂PᵗBu₂), [Pt(L)(P—S)] (L = BCP, MCP; P—S = ᵗBu₂PCH₂(o-₆H4)CH₂SᵗBu), [Pt(C₂H4)(L)(PR₃)] (L = BCP, MCP; PR₃ = PPh₃, PCy₃), [Pt(MCP)₂(PR₃)] (PR₃ = PPh₃, PCy₃) and [PtCl₂(L)(L′)] (L = BCP, MCP; L′ = Py, DMSO). These were the first examples of platinum complexes with ŋ²-BCP ligands, and the first bis-MCP Pt complexes.  BCP underwent ring-opening reactions with both Pt(0) and Pt(II) complexes to form the 1,3-diene allylidenecyclopropane (ACP). The first transition metal complexes of ACP [Pt(ACP)(P—P)] (P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂) were synthesised. Some of these complexes rearranged to form ŋ²:σ²-metallacyclopentene complexes, the first instances of the formation of ŋ²:σ²-metallacyclopentene complexes from ŋ²:π-diene complexes. With MCP, the ring-opening reaction only occurred with [₂(COD)], as a result of the anti-Markovnikov addition of Pt–H, generated by the β-hydride elimination of an Et group, across the double-bond. The major products of this reaction were the 1-methylcyclopropyl complexes [Pt(C(CH₂)₂CH₃)Et(COD)] and [Pt(C(CH₂)₂CH₃)₂(COD)], the first examples of such complexes.  Protonation of [Pt(L)(P—P)] resulted in a ring-opening reaction to form both the 2-substituted and 1-methyl allyl complexes, [Pt(ŋ³-CH₂CRCH₂)(P—P)]⁺ (R = ᶜPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBu₂PCH₂(o-C₆H₄)CH₂PᵗBu₂) and [Pt(ŋ³-CR₂CHCHMe)(P—P)]⁺ (R = cPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBuPCH₂(o-C₆H₄)CH₂PᵗBu₂). The analogous 1-methyl complexes were also formed from [Pt(L)(P—S)], wherein the alkene reacted with a hydride formed by the ortho-metallation of the P—S ligand. Computational models were used to investigate the formation of the allyl structures and it was found that the activation energy had a more significant effect than complex stability on product distributions.  Complexes with β-chloroalkyl ligands [Pt(C(CH₂)₂CR₂Cl)Cl(L)₂] (R = CH₂, H, L = SEt₂, NCᵗBu, Py) were formed by the addition of Pt–Cl across the alkene double bond. Phosphine complexes were formed by the displacement of a ligand from cis–[Pt(C(CH₂)₂CR₂Cl)Cl(Py)₂] (R = CH₂, H). These are the first examples of stable Pt(II) β-haloalkyl complexes. It was found using computational models that the presence of cyclopropyl rings had a stabilising effect on these complexes.</p>


2021 ◽  
Author(s):  
◽  
Sarah Amy Hoyte

<p>The coordination chemistry of the cyclopropyl-substituted alkenes, bicyclopropylidene (BCP) and methylenecyclopropane (MCP), with platinum was explored. A range of complexes with ŋ²-alkene ligands were synthesised by the displacement of a ligand, typically ethene, from a precursor complex. These complexes are [Pt(L)(P—P)] (L = BCP, MCP; P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂, ᵗBu₂PCH₂(o-C₆H₄)₂PᵗBu₂), [Pt(L)(P—S)] (L = BCP, MCP; P—S = ᵗBu₂PCH₂(o-₆H4)CH₂SᵗBu), [Pt(C₂H4)(L)(PR₃)] (L = BCP, MCP; PR₃ = PPh₃, PCy₃), [Pt(MCP)₂(PR₃)] (PR₃ = PPh₃, PCy₃) and [PtCl₂(L)(L′)] (L = BCP, MCP; L′ = Py, DMSO). These were the first examples of platinum complexes with ŋ²-BCP ligands, and the first bis-MCP Pt complexes.  BCP underwent ring-opening reactions with both Pt(0) and Pt(II) complexes to form the 1,3-diene allylidenecyclopropane (ACP). The first transition metal complexes of ACP [Pt(ACP)(P—P)] (P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂) were synthesised. Some of these complexes rearranged to form ŋ²:σ²-metallacyclopentene complexes, the first instances of the formation of ŋ²:σ²-metallacyclopentene complexes from ŋ²:π-diene complexes. With MCP, the ring-opening reaction only occurred with [₂(COD)], as a result of the anti-Markovnikov addition of Pt–H, generated by the β-hydride elimination of an Et group, across the double-bond. The major products of this reaction were the 1-methylcyclopropyl complexes [Pt(C(CH₂)₂CH₃)Et(COD)] and [Pt(C(CH₂)₂CH₃)₂(COD)], the first examples of such complexes.  Protonation of [Pt(L)(P—P)] resulted in a ring-opening reaction to form both the 2-substituted and 1-methyl allyl complexes, [Pt(ŋ³-CH₂CRCH₂)(P—P)]⁺ (R = ᶜPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBu₂PCH₂(o-C₆H₄)CH₂PᵗBu₂) and [Pt(ŋ³-CR₂CHCHMe)(P—P)]⁺ (R = cPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBuPCH₂(o-C₆H₄)CH₂PᵗBu₂). The analogous 1-methyl complexes were also formed from [Pt(L)(P—S)], wherein the alkene reacted with a hydride formed by the ortho-metallation of the P—S ligand. Computational models were used to investigate the formation of the allyl structures and it was found that the activation energy had a more significant effect than complex stability on product distributions.  Complexes with β-chloroalkyl ligands [Pt(C(CH₂)₂CR₂Cl)Cl(L)₂] (R = CH₂, H, L = SEt₂, NCᵗBu, Py) were formed by the addition of Pt–Cl across the alkene double bond. Phosphine complexes were formed by the displacement of a ligand from cis–[Pt(C(CH₂)₂CR₂Cl)Cl(Py)₂] (R = CH₂, H). These are the first examples of stable Pt(II) β-haloalkyl complexes. It was found using computational models that the presence of cyclopropyl rings had a stabilising effect on these complexes.</p>


2021 ◽  
Author(s):  
Xinhang Yang ◽  
Benjamin H. R. Gerroll ◽  
Yuhua Jiang ◽  
Amardeep Kumar ◽  
Yasmine S. Zubi ◽  
...  

Vitamin B12 derivatives catalyze a wide range of organic transformations, but B12-dependent enzymes are underutilized in biocatalysis relative to other metalloenzymes. In this study, we engineered a variant of the transcription factor CarH, called CarH*, that catalyzes styrene C-H alkylation with improved yield and selectivity relative to B12 itself. While the native function of CarH involves transcription regulation via AdoCbl Co(III)-carbon bond cleavage and β-hydride elimination to generate 4’,5’-didehydroadenosine, CarH*-catalyzed styrene alkylation proceeds via non-native oxidative addition and olefin addition coupled with a native-like β-hydride elimination. Mechanistic studies on this reaction echo findings from earlier studies on AdoCbl homolysis under strong cage conditions to suggest that CarH* can enable non-native radical chemistry with improved selectivity relative to B12 itself. These findings lay the groundwork for the development of B12-dependent enzymes as catalysts for a wide range of non-native transformations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao-Biao Yan ◽  
Lun Li ◽  
Wen-Qiang Wu ◽  
Lun Xu ◽  
Ke Li ◽  
...  

AbstractHydroalkylation, the direct addition of a C(sp3)–H bond across an olefin, is a desirable strategy to produce valuable, complex structural motifs in functional materials, pharmaceuticals, and natural products. Herein, we report a reliable method for accessing α-branched amines via nickel-catalyzed hydroalkylation reactions. Specifically, by using bis(cyclooctadiene)nickel (Ni(cod)2) together with a phosphine ligand, we achieved a formal C(sp3)–H bond insertion reaction between olefins and N-sulfonyl amines without the need for an external hydride source. The amine not only provides the alkyl motif but also delivers hydride to the olefin by means of a nickel-engaged β–hydride elimination/reductive elimination process. This method provides a platform for constructing chiral α-branched amines by using a P-chiral ligand, demonstrating its potential utility in organic synthesis. Notably, a sulfonamidyl boronate complex formed in situ under basic conditions promotes ring-opening of the azanickellacycle reaction intermediate, leading to a significant improvement of the catalytic efficiency.


Synthesis ◽  
2021 ◽  
Author(s):  
Jonathan J Wong ◽  
Xiangyang Chen ◽  
Kendall N. Houk ◽  
Peter Vollhardt

The mechanisms by which the complexes CpCoL2 (Cp = C5H5; L = CO or CH2=CH2) mediate the cycloisomerizations of α,,-enynenes containing allylic ether linkages is probed by DFT methods. The outcomes corroborate experimental results and provide energetic and structural details of the trajectories leading to 3-(oxacyclopentyl or cycloalkyl)furans via the intermediacy of isolable CpCo-η4-dienes. They comprise initial stereoselective complexation of one of the double bonds and the triple bond, rate determining oxidative coupling to a triplet 16e cobalta-2-cyclopentene, and terminal double bond docking, followed by stereocontrolled insertion to assemble intermediate cis- and trans-fused triplet cobalta-4-cycloheptenes. A common indicator of the energetic facility of the latter is the extent of parallel alignment of alkene moiety and its target Co-Cα bond. The cobalta-4-cycloheptenes transform further by β-hydride elimination-reductive elimination to furnish CpCo-η4-dienes, sufficiently kinetically protected to allow for their experimental observation. The cascade continues through cobalt-mediated hydride shifts and dissociation of the aromatic furan ring. The findings in silico with respect to the stereo-, regio-, and chemoselectivity are in consonance with those obtained in vitro.


2021 ◽  
Author(s):  
Roman Belli ◽  
Victoria Tafuri ◽  
Matthew Joannou ◽  
Courtney Roberts

Alkyl–alkyl cross coupling through well-defined mechanisms that allow for controlled oxidative addition, prevent beta-hydride elimination, and tolerate hindered electrophiles are still challenging. We describe the first report of a redox-active ligand-enabled alkyl–alkyl cross coupling using a d0 metal. This (tris)amido ScIII complex as well as the oxidized variant are thor-oughly characterized (NMR, X-ray, EPR, CV, UV-Vis, DFT). Insight into the likely radical nature of the mechanism is dis-closed. Additionally, a substrate scope that includes functional groups incompatible with late transition metal catalysis, and both coupling partners bearing beta-hydrogens is reported.


2021 ◽  
Author(s):  
Nikolai Wurzer ◽  
Urszula Klimczak ◽  
Tobias Babl ◽  
Sebastian Fischer ◽  
Ricardo A. Angnes ◽  
...  

Herein, we report a versatile approach for the endocyclic ring-opening of bicyclic vinylcyclopropanes triggered by Heck arylations. Key step for this transformation is a [1,3]-migratory shift of Pd allowing the ring expansion of cyclopropanated pyrroles, piperidines, furans as well as cyclopentadienes to grant access to the corresponding 1,2-dihydropyridines, 2<i>H</i>-pyrans, 2,3-dihydro-1<i>H</i>-azepines and 1,4-cyclohexadienes, respectively. Additionally, <i>gem</i>-disubstituted cyclopropanated furans showed unexpected behavior by giving diastereoselectively asymmetrically substituted dienes. Mechanistic studies and theoretical calculations point towards a facile [1,3]-migratory shift of Pd along the cyclopropane moiety, which can successfully compete with the usual termination step of a Heck reaction via a <i>syn</i>-b-hydride elimination.<br>


Sign in / Sign up

Export Citation Format

Share Document