hull forms
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 39)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 156 (A2) ◽  
Author(s):  
A F Molland ◽  
S R Turnock ◽  
D A Hudson ◽  
I K A P Utama

Environmental issues such as the emission of greenhouse gases, pollution, wash and noise are having an increasing impact on the design and operation of ships. These environmental issues together with economic factors, such as rising fuel costs, all ultimately lead to the need to minimise ship propulsive power. Various methods and devices for reducing propulsive power are reviewed and discussed. The most favourable methods, from a feasible and practical point of view, are identified and quantified. It is found that potential reductions in the resistance of existing good hull forms are relatively small, but optimising hull-propeller-rudder interaction offers very promising prospects for improvement. The biggest potential savings in power arise from optimised operational strategies such as the use of optimum trim, speed and weather routeing. Potential conflicts of interest when considering both economic and environmental requirements are investigated and discussed. Suitable design methodologies and procedures, taking into account economic and environmental factors, are suggested for the design of future ships.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
M Yoshida ◽  
H Kihara ◽  
H Iwashita ◽  
M Kanda ◽  
T Kinoshita

The speed reduction, additional resistance or slamming caused by the large amplitude ship motions, should be completely restricted for a large fast oceangoing ship because of the strict time-punctuality and the high value of the cargo. A “Resonance-Free SWATH (RFS)”, which has negative restoring moments due to the extremely small water plane area, is introduced to minimize the motion responses. A motion control system using small fins is necessary for the RFS, which has no stability during high speed cruising. Theoretical estimations and experiments to search for the optimum values of PD control gains have been performed. Unsteady characteristics of fin-generated lift such as the time lag and the interaction among the fins and lower hulls have been measured and they are taken into account in the motion equations. Then, experiments using the RFS model with controlling fins have been carried out to validate the theoretical estimation for the motion responses of the RFS in waves. The theoretical and experimental results agree well with each other. The motion responses of the RFS in regular and irregular head waves are compared with those of other hull forms, such as a mono-hull, an ordinary SWATH and a trimaran. The clear advantage of the RFS regarding the seaworthiness has been found. In summary, the heave motion response of the RFS is reduced to 1/60 and the pitch motion becomes1/8, compared with those of the existing mono-hull ship.


2021 ◽  
Vol 157 (A4) ◽  
Author(s):  
K A Bhosale ◽  
J T Duffy

A case study was conducted to investigate and quantify stabiliser fin-hull interaction using a combination of Computational Fluid Dynamics and physical model experiments. The fin-hull interaction was studied by comparing the lift and drag of a stabiliser fin in a free stream condition and when attached to a hull. The findings of this case study showed that using free stream fin characteristics to predict performance of a stabiliser fin fitted to the hull resulted in an over-prediction of drag by up to 46% and under-prediction of lift by up to 75% for the speeds and angle of attack analysed. These discrepancies are for this case study only and in practice will vary for different hull forms, fin types, fin location and angles of attack. However, the research highlights the limitations of using free stream fin characteristics to predict the performance of a fin fitted to a hull.


Author(s):  
I Almallah ◽  
J Lavroff ◽  
D S Holloway ◽  
M R Davis

Wave-piercing catamaran hull forms are widely used for high-speed ferry applications due to the hull slenderness, suitable for achieving high speeds. The global loads acting on these craft are of great interest as there is limited knowledge on determining the magnitude of the loads, in particular when operating in random sea conditions. Longitudinal and transverse bending moments as well as pitch connecting moments and hull torsion loads act on the hull simultaneously. This paper investigates the estimation of these global loads from full-scale catamaran sea trials strain gauge data using finite element methods. Det Norske Veritas (DNV) load cases are applied to a finite element model in order to determine the conversion between local strain values observed during sea trials and prevailing global loads. Comparisons are thus made of global loads determined from strain data collected from sea trials with DNV global load cases. The results show that this method is relatively reliable for the prediction of hull global loads in the absence of slamming. Comparisons have been made for different heading angles. The quasi-static design loads are important during the ship design stage, as they are good proxies in wavelengths comparable to the hull length for rationally determined loads obtained from a first-principles dynamic analysis. The broad aims here are to demonstrate the use of strain sensor data obtained during sea trials for determination of global sea loads, to reconcile the loads thus determined with DNV load cases and thereby to improve the accuracy of the predicted loads used in design to increase the structural efficiency of vessel design.


2021 ◽  
Vol 153 (A4) ◽  
Author(s):  
P W Stott ◽  
P N H Wright

In 2014 the Panama Canal Authority is scheduled to bring into commission new locks that will eliminate the long standing Panamax beam constraint of 32.2m. The expansion of the canal is aimed at increased capacity for container transits but will clearly have consequences for all types of vessel. There is an emerging demand for dry bulk carriers that are larger than the current Panamax limit of around 85,000 dwt but smaller than the Capesize class of around 160,000 dwt and the expansion of the canal will facilitate this development. Larger vessels will permit economies of scale and greater efficiency in the dry bulk shipping sector compared to what is currently possible with conventional Panamax ships. The relaxation of the constraint will additionally permit the development of more efficient hull forms than is possible within the existing beam constraint and the expansion of the Panama Canal’s locks will therefore (eventually) contribute directly to the reduction of CO2 produced by dry bulk shipping. The use of the Panamax constraint is far wider than the dry bulk sector, however, and the potential for reduction in carbon emissions for other sectors currently constrained to 32.2m beam is recommended for further study to evaluate the total carbon reduction ‘windfall’ that could result from the expansion of the Canal.


2021 ◽  
Vol 157 (A4) ◽  
Author(s):  
Z Q Leong ◽  
D Ranmuthugala ◽  
I Penesis ◽  
H D Nguyen

When an Autonomous Underwater Vehicle (AUV) is operating close to a moving submarine, the hydrodynamic interaction between the two vehicles can prevent the AUV from maintaining its desired trajectory. This can lead to mission failure and, in extreme cases, collision with the submarine. This paper outlines the transient interaction influence on the hydrodynamic coefficients of an AUV operating in close proximity and in relative motion to a larger moving submarine. The effects of relative motion on the interaction behaviour were investigated via two manoeuvres, i.e. the AUV overtaking and being overtaken by the submarine at different relative forward velocities and lateral distances. The results presented are from a series of Computational Fluid Dynamics (CFD) simulations on axisymmetric AUV and submarine hull forms, with validation of the CFD model carried out through scaled captive model experiments. The results showed that an AUV becomes less susceptible to the interaction influence when overtaking at speeds higher than the submarine. The implications of the interaction influence on the AUV’s ability to safely manoeuvre around the submarine are also discussed.


Author(s):  
Victor-Marian Cocris ◽  
Mihaela Amoraritei

The present work is focused on ship resistance performances assessment for a given capacity containership. Starting from the main dimensions of a parent ship, other ten hull forms have been generated using DELFTship free program. For each case, the hydrodynamic ship resistance has been calculated using an inhouse code. The objective was to modified some geometrical parameters to obtain shapes of the hull that would provide the least resistance at the required transport capacity. The results obtained will be used in a future analysis related to the impact of hull forms improvements and ship resistance reduction on the propulsive performance and CO2 emissions per transport work.


2021 ◽  
Vol 9 (11) ◽  
pp. 1234
Author(s):  
Gregory J. Grigoropoulos ◽  
Christos Bakirtzoglou ◽  
George Papadakis ◽  
Dimitrios Ntouras

The present paper proposes a new mixed-fidelity method to optimize the shape of ships using genetic algorithms (GA) and potential flow codes to evaluate the hydrodynamics of variant hull forms, enhanced by a surrogate model based on an Artificial Neural Network (ANN) to account for viscous effects. The performance of the variant hull forms generated by the GA is evaluated for calm water resistance using potential flow methods which are quite fast when they run on modern computers. However, these methods do not take into account the viscous effects which are dominant in the stern region of the ship. Solvers of the Reynolds-Averaged Navier-Stokes Equations (RANS) should be used in this respect, which, however, are too time-consuming to be used for the evaluation of some hundreds of variants within the GA search. In this study, a RANS solver is used prior to the execution of the GA to train an ANN in modeling the effect of stern design geometrical parameters only. Potential flow results, accounting for the geometrical design parameters of the rest of the hull, are combined with the aforementioned trained meta-model for the final hull form evaluation. This work concentrates on the provision of a more reliable framework for the evaluation of hull form performance in calm water without a significant increase of the computing time.


2021 ◽  
Vol 56 (6) ◽  
pp. 938-942
Author(s):  
Takeaki Tamada
Keyword(s):  

2021 ◽  
Author(s):  
Justin Jones ◽  
Ian Childs

Abstract As floating wind farms move from pilot projects to commercial-scale installations they will move further offshore and into deeper water. There will be a requirement for offshore substations to deliver the electricity to shore, for which floating support structures will be the preferred solution. This paper describes the challenges and development of solutions for commercial-scale HVAC and HVDC floating offshore substations. Two different floating substation concepts have been developed. Layouts for the electrical and ancillary equipment were initially developed, to enable efficient packaging and structural efficiency for the topsides. By integrating the hull and topsides, the overall mass of the structure is minimised, benefitting stability and reducing hull size. Hydrodynamic analysis of the substructures was performed and structural code checks on the hull and topsides were carried out in Sesam. Mooring designs for each structure for 250m water depth have been developed and analysed in Orcaflex. It is likely that alternating current (HVAC) export to shore will be used for shorter transmission distances and direct current (HVDC) will be used for longer transmission distances. HVDC and HVAC floating substations will have quite different hull forms. The larger topsides footprint and greater mass of the HVDC conversion equipment make a conventional semi-submersible hull form efficient when allied to a stressed-skin topsides structure. The smaller footprint, lighter weight and differing requirements for protection from the elements of the HVAC topsides make this inefficient, so a deep draught semi-submersible with a hybrid topsides is the preferred solution. It is concluded that floating substations suitable for large, commercial-scale wind farms will be the chosen solution for anything other than shallow water or close to shore.


Sign in / Sign up

Export Citation Format

Share Document