biosynthetic engineering
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shan Wang ◽  
William D. G. Brittain ◽  
Qian Zhang ◽  
Zhou Lu ◽  
Ming Him Tong ◽  
...  

AbstractNon-Ribosomal Peptide Synthetases (NRPSs) assemble a diverse range of natural products with important applications in both medicine and agriculture. They consist of several multienzyme subunits that must interact with each other in a highly controlled manner to facilitate efficient chain transfer, thus ensuring biosynthetic fidelity. Several mechanisms for chain transfer are known for NRPSs, promoting structural diversity. Herein, we report the first biochemically characterized example of a type II thioesterase (TEII) domain capable of catalysing aminoacyl chain transfer between thiolation (T) domains on two separate NRPS subunits responsible for installation of a dehydrobutyrine moiety. Biochemical dissection of this process reveals the central role of the TEII-catalysed chain translocation event and expands the enzymatic scope of TEII domains beyond canonical (amino)acyl chain hydrolysis. The apparent co-evolution of the TEII domain with the NRPS subunits highlights a unique feature of this enzymatic cassette, which will undoubtedly find utility in biosynthetic engineering efforts.


Author(s):  
Caiyun Li ◽  
Khorshed Alam ◽  
Yiming Zhao ◽  
Jinfang Hao ◽  
Qing Yang ◽  
...  

Antimicrobial resistance is one of the most serious public health issues in the worldwide and only a few new antimicrobial drugs have been discovered in recent decades. To overcome the ever-increasing emergence of multidrug-resistant (MDR) pathogens, discovery of new natural products (NPs) against MDR pathogens with new technologies is in great demands. Lanthipeptides which are ribosomally synthesized and post-translationally modified peptides (RiPPs) display high diversity in their chemical structures and mechanisms of action. Genome mining and biosynthetic engineering have also yielded new lanthipeptides, which are a valuable source of drug candidates. In this review we cover the recent advances in the field of microbial derived lanthipeptide discovery and development.


Author(s):  
Takayoshi Awakawa ◽  
Lena Barra ◽  
Ikuro Abe

Abstract Sulfonamides and sulfamates are a group of organosulfur compounds that contain the signature sulfamoyl structural motif. These compounds were initially only known as synthetic antibacterial drugs but were later also discovered as natural products. Eight highly potent examples have been isolated from actinomycetes to date, illustrating the large biosynthetic repertoire of this bacterial genus. For the biosynthesis of these compounds, several distinct and unique biosynthetic machineries have been discovered, capable to generate the unique S-N bond. For the creation of novel, second generation natural products by biosynthetic engineering efforts, a detailed understanding of the underlying enzyme machinery towards potent structural motifs is crucial. In this review, we aim to summarize the current state of knowledge on sulfonamide and sulfamate biosynthesis. A detailed discussion for the secondary sulfamate ascamycin, the tertiary sulfonamide sulfadixiamycin A, and the secondary sulfonamide SB-203208 is provided and their bioactivities and mode of actions are discussed.


2020 ◽  
Vol 83 (5) ◽  
pp. 1666-1673
Author(s):  
Zhijie Yang ◽  
Changli Sun ◽  
Zhiyong Liu ◽  
Qing Liu ◽  
Tianyu Zhang ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Wan Lin Yeo ◽  
Elena Heng ◽  
Lee Ling Tan ◽  
Yi Wee Lim ◽  
Kuan Chieh Ching ◽  
...  

AbstractUsing an established CRISPR-Cas mediated genome editing technique for streptomycetes, we explored the combinatorial biosynthesis potential of the auroramycin biosynthetic gene cluster in Streptomyces roseosporous. Auroramycin is a potent anti-MRSA polyene macrolactam. In addition, auroramycin has antifungal activities, which is unique among structurally similar polyene macrolactams, such as incednine and silvalactam. In this work, we employed different engineering strategies to target glycosylation and acylation biosynthetic machineries within its recently elucidated biosynthetic pathway. Auroramycin analogs with variations in C-, N- methylation, hydroxylation and extender units incorporation were produced and characterized. By comparing the bioactivity profiles of five of these analogs, we determined that unique disaccharide motif of auroramycin is essential for its antimicrobial bioactivity. We further demonstrated that C-methylation of the 3, 5-epi-lemonose unit, which is unique among structurally similar polyene macrolactams, is key to its antifungal activity.


2019 ◽  
Author(s):  
Wan Lin Yeo ◽  
Elena Heng ◽  
Lee Ling Tan ◽  
Yi Wee Lim ◽  
Kuan Chieh Ching ◽  
...  

AbstractUsing an established CRISPR-Cas mediated genome editing technique for streptomycetes, we explored the combinatorial biosynthesis potential of the auroramycin biosynthetic gene cluster in Streptomyces roseoporous. Auroramycin is a potent anti-MRSA polyene macrolactam. In addition, it also displays antifungal activities, which is unique among structurally similar polyene macrolactams, such as incednine and silvalactam. In this work, we employed different engineering strategies to target glycosylation and acylation biosynthetic machineries within its recently elucidated biosynthetic pathway. Six auroramycin analogs with variations in C-, N-methylation, hydroxylation and extender units incorporation were produced and characterized. By comparing the bioactivity profiles of these analogs, we determined that unique disaccharide motif of auroramycin is essential for its antimicrobial bioactivity. We further demonstrated that C-methylation of the 3, 5-epi-lemonose unit, which is unique among structurally similar polyene macrolactams, is key to its antifungal activity.


2019 ◽  
Author(s):  
Shanshan Zhou ◽  
Lijiang Song ◽  
Joleen Masschelein ◽  
Felaine A.M. Sumang ◽  
Irene A. Papa ◽  
...  

ABSTRACTPentamycin is a polyene antibiotic, registered in Switzerland for the treatment of vaginal candidiasis, trichomo-niasis and mixed infections. Chemical instability has hindered its wide-spread application and development as a drug. Here we report the identification ofStreptomycessp. S816, isolated from Philippine mangrove soil, as a pentamycin producer. Genome sequence analysis identified the putative pentamycin biosynthetic gene cluster, which shows a high degree of similarity to the gene cluster responsible for filipin III biosynthesis. TheptnJgene, which is absent from the filipin III biosynthetic gene cluster, was shown to encode a cytochrome P450 capable of converting filipin III to pentamycin. This confirms that the cluster directs pentamycin biosynthesis, paving the way for biosynthetic engineering approaches to the production of pentamycin analogues. Several otherStreptomycesgenomes were found to containptnJorthologues clustered with genes encoding polyketide synthases that appear to have similar architectures to those responsible for the assembly of filipin III and pentamycin, suggesting pentamycin production may be common inStreptomycesspecies.


Sign in / Sign up

Export Citation Format

Share Document