ssu processome
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 1)

RNA ◽  
2021 ◽  
pp. rna.079025.121
Author(s):  
Joshua J Black ◽  
Arlen W Johnson

Ribosomes are the universally conserved ribonucleoprotein complexes that synthesize proteins. The two subunits of the eukaryotic ribosome are produced through a quasi-independent assembly-line-like pathway involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. The earliest intermediate of the small subunit (SSU or 40S) is the SSU Processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors are known to bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S, and we suggest a model in which the binding of the Rps0-cluster proteins and Rio2 promote the release of Bud23.


2021 ◽  
Author(s):  
Joshua J Black ◽  
Arlen W Johnson

Ribosomes are the universally conserved ribonucleoprotein complexes that synthesize proteins. The two subunits of the eukaryotic ribosome are produced through a quasi-independent assembly-line-like pathway involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. The earliest intermediate of the small subunit (SSU or 40S) is the SSU Processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors are known to bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S, and we suggest a model in which the binding of the Rps0-cluster proteins and Rio2 promote the release of Bud23.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009215
Author(s):  
Joshua J. Black ◽  
Richa Sardana ◽  
Ezzeddine W. Elmir ◽  
Arlen W. Johnson

The first metastable assembly intermediate of the eukaryotic ribosomal small subunit (SSU) is the SSU Processome, a large complex of RNA and protein factors that is thought to represent an early checkpoint in the assembly pathway. Transition of the SSU Processome towards continued maturation requires the removal of the U3 snoRNA and biogenesis factors as well as ribosomal RNA processing. While the factors that drive these events are largely known, how they do so is not. The methyltransferase Bud23 has a role during this transition, but its function, beyond the nonessential methylation of ribosomal RNA, is not characterized. Here, we have carried out a comprehensive genetic screen to understand Bud23 function. We identified 67 unique extragenic bud23Δ-suppressing mutations that mapped to genes encoding the SSU Processome factors DHR1, IMP4, UTP2 (NOP14), BMS1 and the SSU protein RPS28A. These factors form a physical interaction network that links the binding site of Bud23 to the U3 snoRNA and many of the amino acid substitutions weaken protein-protein and protein-RNA interactions. Importantly, this network links Bud23 to the essential GTPase Bms1, which acts late in the disassembly pathway, and the RNA helicase Dhr1, which catalyzes U3 snoRNA removal. Moreover, particles isolated from cells lacking Bud23 accumulated late SSU Processome factors and ribosomal RNA processing defects. We propose a model in which Bud23 dissociates factors surrounding its binding site to promote SSU Processome progression.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2195
Author(s):  
Timothy John Vos ◽  
Ute Kothe

The small nucleolar RNA snR30 (U17 in humans) plays a unique role during ribosome synthesis. Unlike most members of the H/ACA class of guide RNAs, the small nucleolar ribonucleoprotein (snoRNP) complex assembled on snR30 does not direct pseudouridylation of ribosomal RNA (rRNA), but instead snR30 is critical for 18S rRNA processing during formation of the small subunit (SSU) of the ribosome. Specifically, snR30 is essential for three pre-rRNA cleavages at the A0/01, A1/1, and A2/2a sites in yeast and humans, respectively. Accordingly, snR30 is the only essential H/ACA guide RNA in yeast. Here, we summarize our current knowledge about the interactions and functions of snR30, discuss what remains to be elucidated, and present two non-exclusive hypotheses on the possible molecular function of snR30 during ribosome biogenesis. First, snR30 might be responsible for recruiting other proteins including endonucleases to the SSU processome. Second, snR30 may contribute to the refolding of pre-rRNA into a required conformation that serves as a checkpoint during ribosome biogenesis facilitating pre-rRNA cleavage. In both scenarios, the snR30 snoRNP may have scaffolding and RNA chaperoning activity. In conclusion, the snR30 snoRNP is a crucial player with an unknown molecular mechanism during ribosome synthesis, posing many interesting future research questions.


2020 ◽  
Author(s):  
Joshua J. Black ◽  
Richa Sardana ◽  
Ezzeddine W. Elmir ◽  
Arlen W. Johnson

AbstractThe first metastable assembly intermediate of the eukaryotic ribosomal small subunit (SSU) is the SSU Processome, a large complex of RNA and protein factors that is thought to represent an early checkpoint in the assembly pathway. Transition of the SSU Processome towards continued maturation requires the removal of the U3 snoRNA and biogenesis factors as well as ribosomal RNA processing. While the factors that drive these events are largely known, how they do so is not well understood. The methyltransferase Bud23 has a role during this transition, but its function, beyond the nonessential methylation of 18S rRNA, is not characterized. Here, we have carried out a comprehensive genetic screen to understand Bud23 function. We identified 67 unique extragenic bud23Δ-suppressing mutations that mapped to genes encoding the SSU Processome factors DHR1, IMP4, UTP2 (NOP14), BMS1 and the SSU protein RPS28A. These factors form a physical interaction network that links the binding site of Bud23 to the U3 snoRNA and many of the suppressing mutations weaken protein-protein and protein-RNA interactions. Importantly, this network links Bud23 to the GTPase Bms1 and the RNA helicase Dhr1. Bms1 is thought to drive conformational changes to promote rRNA cleavage, and we previously showed that Dhr1 is required for unwinding the U3 snoRNA. Moreover, particles isolated from cells lacking Bud23 accumulated late SSU Processome factors and pre-rRNAs not cleaved at sites A1 and A2. We propose a model in which Bud23 dissociates factors surrounding its binding site to promote SSU Processome progression.Author summaryRibosomes are the molecular machines that synthesize proteins and are composed of a large and a small subunit which carry out the essential functions of polypeptide synthesis and mRNA decoding, respectively. Ribosome production is tightly linked to cellular growth as cells must produce enough ribosomes to meet their protein needs. However, ribosome assembly is a metabolically expensive pathway that must be balanced with other cellular energy needs and regulated accordingly. In eukaryotes, the small subunit (SSU) Processome is a metastable intermediate that ultimately progresses towards a mature SSU through the release of biogenesis factors. The decision to progress the SSU Processome is thought to be an early checkpoint in the SSU assembly pathway, but what drives this checkpoint is unknown. Previous studies suggest that Bud23 plays an uncharacterized role during SSU Processome progression. Here, we used a genetic approach to understand its function and found that Bud23 is connected to a network of factors that stabilize the particle. Interestingly, two of these factors are enzymes that facilitate structural rearrangements needed for progression. We conclude that Bud23 promotes the release of factors surrounding its binding site to drive rearrangements during the progression of the SSU Processome.


2020 ◽  
Vol 48 (7) ◽  
pp. 3848-3868 ◽  
Author(s):  
Guillaume Clerget ◽  
Valérie Bourguignon-Igel ◽  
Nathalie Marmier-Gourrier ◽  
Nicolas Rolland ◽  
Ludivine Wacheul ◽  
...  

Abstract U3 snoRNA and the associated Rrp9/U3-55K protein are essential for 18S rRNA production by the SSU-processome complex. U3 and Rrp9 are required for early pre-rRNA cleavages at sites A0, A1 and A2, but the mechanism remains unclear. Substitution of Arg 289 in Rrp9 to Ala (R289A) specifically reduced cleavage at sites A1 and A2. Surprisingly, R289 is located on the surface of the Rrp9 β-propeller structure opposite to U3 snoRNA. To understand this, we first characterized the protein-protein interaction network of Rrp9 within the SSU-processome. This identified a direct interaction between the Rrp9 β-propeller domain and Rrp36, the strength of which was reduced by the R289A substitution, implicating this interaction in the observed processing phenotype. The Rrp9 R289A mutation also showed strong synergistic negative interactions with mutations in U3 that destabilize the U3/pre-rRNA base-pair interactions or reduce the length of their linking segments. We propose that the Rrp9 β-propeller and U3/pre-rRNA binding cooperate in the structure or stability of the SSU-processome. Additionally, our analysis of U3 variants gave insights into the function of individual segments of the 5′-terminal 72-nt sequence of U3. We interpret these data in the light of recently reported SSU-processome structures.


2018 ◽  
Author(s):  
Joshua J. Black ◽  
Zhaohui Wang ◽  
Lisa M. Goering ◽  
Arlen W. Johnson

AbstractThe SSU Processome (sometimes referred to as 90S) is an early stabile intermediate in the small ribosomal subunit biogenesis pathway of eukaryotes. Progression of the SSU Processome to a pre-40S particle requires a large-scale compaction of the RNA and release of many biogenesis factors. The U3 snoRNA is a primary component of the SSU Processome and hybridizes to the rRNA at multiple locations to organize the structure of the SSU Processome. Thus, release of U3 is prerequisite for the transition to pre-40S. Our lab proposed that the RNA helicase Dhr1 plays a crucial role in the transition by unwinding U3 and that this activity is controlled by the SSU Processome protein Utp14. How Utp14 times the activation of Dhr1 is an open question. Despite being highly conserved, Utp14 contains no recognizable domains, and how Utp14 interacts with the SSU Processome is not well characterized. Here, we used UV crosslinking and analysis of cDNA and yeast two-hybrid interaction to characterize how Utp14 interacts with the pre-ribosome. Moreover, proteomic analysis of SSU particles lacking Utp14 revealed that Utp14 is needed for efficient recruitment of the RNA exosome. Our analysis positions Utp14 to be uniquely poised to communicate the status of assembly of the SSU Processome to Dhr1 and possibly the exosome as well.


RNA ◽  
2017 ◽  
Vol 24 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Nicholas G. Vincent ◽  
J. Michael Charette ◽  
Susan J. Baserga

Sign in / Sign up

Export Citation Format

Share Document