transcriptional corepressors
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 12)

H-INDEX

24
(FIVE YEARS 1)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262360
Author(s):  
Mathias Rass ◽  
Laura Gizler ◽  
Florian Bayersdorfer ◽  
Christoph Irlbeck ◽  
Matthias Schramm ◽  
...  

Over the years Ski and Sno have been found to be involved in cancer progression e.g. in oesophageal squamous cell carcinoma, melanoma, oestrogen receptor-positive breast carcinoma, colorectal carcinoma, and leukaemia. Often, their prooncogenic features have been linked to their ability of inhibiting the anti-proliferative action of TGF-ß signalling. Recently, not only pro-oncogenic but also anti-oncogenic functions of Ski/Sno proteins have been revealed. Besides Ski and Sno, which are ubiquitously expressed other members of Ski/Sno proteins exist which show highly specific neuronal expression, the SKI Family Transcriptional Corepressors (Skor). Among others Skor1 and Skor2 are involved in the development of Purkinje neurons and a mutation of Skor1 has been found to be associated with restless legs syndrome. But neither Skor1 nor Skor2 have been reported to be involved in cancer progression. Using overexpression studies in the Drosophila eye imaginal disc, we analysed if the Drosophila Skor homologue Fuss has retained the potential to inhibit differentiation and induce increased proliferation. Fuss expressed in cells posterior to the morphogenetic furrow, impairs photoreceptor axon pathfinding and inhibits differentiation of accessory cells. However, if its expression is induced prior to eye differentiation, Fuss might inhibit the differentiating function of Dpp signalling and might maintain proliferative action of Wg signalling, which is reminiscent of the Ski/Sno protein function in cancer.


2021 ◽  
Author(s):  
Josh Saul ◽  
Takashi Hirose ◽  
Robert Horvitz

Cell identity is characterized by a distinct combination of gene expression, cell morphology and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in older worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.


2021 ◽  
Author(s):  
Thomas Griebel ◽  
Dmitry Lapin ◽  
Federica Locci ◽  
Barbara Kracher ◽  
Jaqueline Bautor ◽  
...  

Transcriptional corepressors of the Topless family are important regulators of plant hormone and immunity signaling. The lack of a genome-wide profile of their chromatin associations limits understanding of transcriptional regulation in plant immune responses. Chromatin immunoprecipitation with sequencing (ChIP-seq) was performed on GFP-tagged Topless-related 1 (TPR1) expressed in Arabidopsis thaliana lines with and without constitutive immunity dependent on Enhanced Disease Susceptibility 1 (EDS1). RNA-seq profiling of pathogen-infected tpl/tpr mutants and assessments of growth and physiological parameters were employed to determine TPL/TPR roles in transcriptional immunity and defense homeostasis. TPR1 bound to promoter regions of ~1,400 genes and ~10% of the detected binding required EDS1 immunity signaling. A tpr1 tpl tpr4 (t3) mutant displayed mildly enhanced defense-related transcriptional reprogramming upon bacterial infection but not increased bacterial resistance. Bacteria or pep1 phytocytokine-challenged t3 plants exhibited, respectively, photosystem II dysfunction and exacerbated root growth inhibition. Transgenic expression of TPR1 restored the t3 physiological defects. We propose that TPR1 and TPL-family proteins function in Arabidopsis to reduce detrimental effects associated with activated transcriptional immunity.


2020 ◽  
Vol 117 (48) ◽  
pp. 30805-30815
Author(s):  
Mingzhe Shen ◽  
Chae Jin Lim ◽  
Junghoon Park ◽  
Jeong Eun Kim ◽  
Dongwon Baek ◽  
...  

Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.


Author(s):  
Thomas Griebel ◽  
Dmitry Lapin ◽  
Barbara Kracher ◽  
Lorenzo Concia ◽  
Moussa Benhamed ◽  
...  

AbstractTimely and specific regulation of gene expression is critical for plant responses to environmental and developmental cues. Transcriptional coregulators have emerged as important factors in gene expression control, although they lack DNA-binding domains and the mechanisms by which they are recruited to and function at the chromatin are poorly understood. Plant Topless-related 1 (TPR1), belonging to a family of transcriptional corepressors found across eukaryotes, contributes to immunity signaling in Arabidopsis thaliana and wild tobacco. We performed chromatin immunoprecipitation and sequencing (ChIP-seq) on an Arabidopsis TPR1-GFP expressing transgenic line to characterize genome-wide TPR1-chromatin associations. The analysis revealed ∼1400 genes bound by TPR1, with the majority of binding sites located at gene upstream regions. Among the TPR1 bound genes, we find not only regulators of immunity but also genes controlling growth and development. To support further analysis of TPR1-chromatin complexes and other transcriptional corepressors in plants, we provide two ways to access the processed ChIP-seq data and enable their broader use by the research community.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8952 ◽  
Author(s):  
Georgina Peñalosa-Ruiz ◽  
Klaas W. Mulder ◽  
Gert Jan C. Veenstra

Reprogramming somatic cells to induced pluripotent stem cells (iPSC) succeeds only in a small fraction of cells within the population. Reprogramming occurs in distinctive stages, each facing its own bottlenecks. It initiates with overexpression of transcription factors OCT4, SOX2, KLF4 and c-MYC (OSKM) in somatic cells such as mouse embryonic fibroblasts (MEFs). OSKM bind chromatin, silencing the somatic identity and starting the stepwise reactivation of the pluripotency programme. However, inefficient suppression of the somatic lineage leads to unwanted epigenetic memory from the tissue of origin, even in successfully generated iPSCs. Thus, it is essential to shed more light on chromatin regulators and processes involved in dissolving the somatic identity. Recent work characterised the role of transcriptional corepressors NCOR1 and NCOR2 (also known as NCoR and SMRT), showing that they cooperate with c-MYC to silence pluripotency genes during late reprogramming stages. NCOR1/NCOR2 were also proposed to be involved in silencing fibroblast identity, however it is unclear how this happens. Here, we shed light on the role of NCOR1 in early reprogramming. We show that siRNA-mediated ablation of NCOR1 and OCT4 results in very similar phenotypes, including transcriptomic changes and highly correlated high-content colony phenotypes. Both NCOR1 and OCT4 bind to promoters co-occupied by c-MYC in MEFs. During early reprogramming, downregulation of one group of somatic MEF-expressed genes requires both NCOR1 and OCT4, whereas another group of MEF-expressed genes is downregulated by NCOR1 but not OCT4. Our data suggest that NCOR1, assisted by OCT4 and c-MYC, facilitates transcriptional repression of genes with high expression in MEFs, which is necessary to bypass an early reprogramming block; this way, NCOR1 facilitates early reprogramming progression.


2020 ◽  
Vol 217 (6) ◽  
Author(s):  
Anirban Kundu ◽  
Hyeyoung Nam ◽  
Sandeep Shelar ◽  
Darshan S. Chandrashekar ◽  
Garrett Brinkley ◽  
...  

Analysis of transcriptomic data demonstrates extensive epigenetic gene silencing of the transcription factor PRDM16 in renal cancer. We show that restoration of PRDM16 in RCC cells suppresses in vivo tumor growth. RNaseq analysis reveals that PRDM16 imparts a predominantly repressive effect on the RCC transcriptome including suppression of the gene encoding semaphorin 5B (SEMA5B). SEMA5B is a HIF target gene highly expressed in RCC that promotes in vivo tumor growth. Functional studies demonstrate that PRDM16’s repressive properties, mediated by physical interaction with the transcriptional corepressors C-terminal binding proteins (CtBP1/2), are required for suppression of both SEMA5B expression and in vivo tumor growth. Finally, we show that reconstitution of RCC cells with a PRDM16 mutant unable to bind CtBPs nullifies PRDM16’s effects on both SEMA5B repression and tumor growth suppression. Collectively, our data uncover a novel epigenetic basis by which HIF target gene expression is amplified in kidney cancer and a new mechanism by which PRDM16 exerts its tumor suppressive effects.


2020 ◽  
Author(s):  
Martin L. Privalsky

ABSTRACTNCoR-1 and NCoR-2 are transcriptional corepressors encoded in vertebrates by two interrelated loci and play distinct, though overlapping, roles in development, differentiation, and homeostasis. In contrast NCoR is encoded by a single locus in cephalochordates, urochordates, hemichordates, and echinoderms, with vertebrate NCoR-1 and NCoR-2 thought to be the products of a gene duplication originating near the beginning of vertebrate evolution. The structures, molecular properties, and functions of extant NCoR-1 and NCoR-2 are each substantially further diversified by alternative mRNA splicing; however it is unresolved as to whether the alternative-splicing observed in current day vertebrates reflects patterns present in the ancestral common gene or instead arose after the NCoR duplication event. This manuscript reports that Amphioxus, a cephalochordate considered representative of the organisms that gave rise to the vertebrate lineage, lacks the alternative NCoR splicing events characteristic of vertebrates. This, together with prior taxonomic comparisons, suggests that the patterns of corepressor splicing found in existing vertebrates arose exclusively after the NCoR duplication event. Further, given that alternative-splicing of NCoR-1 and NCoR-2 appears to have arisen by a mix of convergent and divergent evolution, it is likely that both common and distinct selective pressures were operative on these corepressor paralogs after their divergence.


2020 ◽  
Author(s):  
Nicholas Treen ◽  
Shunsuke F. Shimobayashi ◽  
Jorine Eeftens ◽  
Clifford P. Brangwynne ◽  
Michael S. Levine

AbstractThere is emerging evidence for transcription condensates in the activation of gene expression1–3. However, there is considerably less information regarding transcriptional repression, despite its pervasive importance in regulating gene expression in development and disease. Here, we explore the role of liquid-liquid phase separation (LLPS) in the organization of the Groucho/TLE (Gro) family of transcriptional corepressors, which interact with a variety of sequence-specific repressors such as Hes/Hairy4. Gro-dependent repressors have been implicated in a variety of developmental processes, including segmentation of the Drosophila embryo and somitogenesis in vertebrates. These repressors bind to specific recognition sequences, but instead of interacting with coactivators (e.g., Mediator) they recruit Gro corepressors5. Gro contains a series of WD40 repeats that are thought to mediate oligomerization6. How putative Hes/Gro oligomers repress transcription has been the subject of numerous studies5, 6. Here we show that Hes/Gro complexes form discrete puncta within nuclei of living Ciona embryos. These puncta rapidly dissolve during the onset of mitosis and reappear in the ensuing cell cycle. Modified Hes/Gro complexes that are unable to bind DNA exhibit the properties of viscous liquid droplets, similar to those underlying the biogenesis of P-granules in C. elegans7 and nucleoli in Xenopus oocytes8. These observations provide vivid evidence for LLPS in the control of gene expression and suggest a simple physical exclusion mechanism for transcriptional repression. WD40 repeats have been implicated in a wide variety of cellular processes in addition to transcriptional repression9. We suggest that protein interactions using WD40 motifs might be a common feature of processes reliant on LLPS.


2020 ◽  
Vol 295 (7) ◽  
pp. 1879-1888
Author(s):  
Chengfu Zhang ◽  
Hao Huang ◽  
Zhen Chen ◽  
Zunyi Zhang ◽  
Wenwen Lu ◽  
...  

The homeodomain protein NK2 homeobox 2 (NKX2-2) is a transcription factor that plays a critical role in the control of cell fate specification and differentiation in many tissues. In the developing central nervous system, this developmentally important transcription factor functions as a transcriptional repressor that governs oligodendrocyte (OL) differentiation and myelin gene expression, but the roles of various NKX2-2 structural domains in this process are unclear. In this study, using in situ hybridization, immunofluorescence, and coimmunoprecipitation, we determined the structural domains that mediate the repressive functions of murine NKX2-2 and identified the transcriptional corepressors that interact with it in OL cells. Through in ovo electroporation in embryonic chicken spinal cords, we demonstrate that the N-terminal Tinman domain and C-terminal domain synergistically promote OL differentiation by recruiting distinct transcriptional corepressors, including enhancer of split Groucho 3 (GRG3), histone deacetylase 1 (HDAC1), and DNA methyltransferase 3 α (DNMT3A). We also observed that the NK2-specific domain suppresses the function of the C-terminal domain in OL differentiation. These findings delineate the distinct NKX2-2 domains and their roles in OL differentiation and suggest that NKX2-2 regulates differentiation by repressing gene expression via multiple cofactors and molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document