connection length
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 13)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Jun Wu ◽  
Jian Liu ◽  
Xiuyuan Li ◽  
Lingbo Yan ◽  
Libo Cao ◽  
...  

The driver’s whole-body posture at the time of a collision is a key factor in determining the magnitude of injury to the driver. However, current researchs on driver posture models only consider the upper body posture of the driver, and the lower body area which is not perceived by sensors is not studied. This paper investigates the driver’s posture and establishes a 3D posture model of the driver’s whole body through the application of machine vision algorithms and regression model statistics. This study proposes an improved Kinect-OpenPose algorithm for identifying the 3D spatial coordinates of nine keypoints of the driver’s upper body. The posture prediction regression model of four keypoints of the lower body is established by conducting volunteer posture acquisition experiments on the developed simulated driving seat and analyzing the volunteer posture data through using the principal components of the upper body keypoints and the seat parameters. The experiments proved that the error of the regression model in this paper is minor than that of current studies, and the accuracy of the keypoint location and the keypoint connection length of the established driver whole body posture model is high, which provides implications for future studies.


Author(s):  
Matteo Mancini ◽  
Qiyuan Tian ◽  
Qiuyun Fan ◽  
Mara Cercignani ◽  
Susie Y. Huang

AbstractNetwork models based on structural connectivity have been increasingly used as the blueprint for large-scale simulations of the human brain. As the nodes of this network are distributed through the cortex and interconnected by white matter pathways with different characteristics, modeling the associated conduction delays becomes important. The goal of this study is to estimate and characterize these delays directly from the brain structure. To achieve this, we leveraged microstructural measures from a combination of advanced magnetic resonance imaging acquisitions and computed the main determinants of conduction velocity, namely axonal diameter and myelin content. Using the model proposed by Rushton, we used these measures to calculate the conduction velocity and estimated the associated delays using tractography. We observed that both the axonal diameter and conduction velocity distributions presented a rather constant trend across different connection lengths, with resulting delays that scale linearly with the connection length. Relying on insights from graph theory and Kuramoto simulations, our results support the approximation of constant conduction velocity but also show path- and region-specific differences.


2021 ◽  
Vol 87 (3) ◽  
Author(s):  
G.T. Roberg-Clark ◽  
G.G. Plunk ◽  
P. Xanthopoulos

A first-principles method to calculate the critical temperature gradient for the onset of the ion-temperature-gradient mode (ITG) in linear gyrokinetics is presented. We find that conventional notions of the connection length previously invoked in tokamak research should be revised and replaced by a generalized correlation length to explain this onset in stellarators. Simple numerical experiments and gyrokinetic theory show that localized ‘spikes’ in shear, a hallmark of stellarator geometry, are generally insufficient to constrain the parallel correlation length of the mode. ITG modes that localize within bad drift curvature wells that have a critical gradient set by peak drift curvature are also observed. A case study of near-helical stellarators of increasing field period demonstrates that the critical gradient can indeed be controlled by manipulating the magnetic geometry, but underscores the need for a general framework to evaluate the critical gradient. We conclude that average curvature and global shear set the correlation length of resonant ITG modes near the absolute critical gradient, the physics of which is included through direct solution of the gyrokinetic equation. Our method, which handles the general geometry and is more efficient than conventional gyrokinetic solvers, could be applied to future studies of stellarator ITG turbulence optimization.


2020 ◽  
Vol 86 (4) ◽  
Author(s):  
S. Okamura ◽  
H. Liu ◽  
A. Shimizu ◽  
S. Kinoshita ◽  
M. Isobe ◽  
...  

A magnetic field configuration of an island divertor for a quasi-axisymmetric stellarator (CFQS) is proposed. The configuration incorporates large islands surrounding the core confinement region. The interface between the core region and the peripheral region of the island divertor is a clear magnetic separatrix similar to a tokamak divertor. The structure of divertor magnetic field lines is very regular without stochasticity and the connection length is sufficiently long for good divertor performance. Such a divertor configuration is produced in the magnetic field configuration for the CFQS device, which is now under construction in China.


2020 ◽  
Vol 30 (12) ◽  
pp. 6363-6375
Author(s):  
Shahrzad Latifi ◽  
Simon Mitchell ◽  
Rouhollah Habibey ◽  
Fouzhan Hosseini ◽  
Elissa Donzis ◽  
...  

Abstract Despite substantial recent progress in network neuroscience, the impact of stroke on the distinct features of reorganizing neuronal networks during recovery has not been defined. Using a functional connections-based approach through 2-photon in vivo calcium imaging at the level of single neurons, we demonstrate for the first time the functional connectivity maps during motion and nonmotion states, connection length distribution in functional connectome maps and a pattern of high clustering in motor and premotor cortical networks that is disturbed in stroke and reconstitutes partially in recovery. Stroke disrupts the network topology of connected inhibitory and excitatory neurons with distinct patterns in these 2 cell types and in different cortical areas. These data indicate that premotor cortex displays a distinguished neuron-specific recovery profile after stroke.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3598
Author(s):  
Kyung-Hwan Ji ◽  
Hyun-Kook Shin ◽  
Seungwoo Han ◽  
Jae-Hun Jo

In this study, a model equation is derived that uses a statistical analysis based on empirical models to predict the airtightness of reinforced concrete apartment buildings popular in Asian regions. Airtightness data from 486 units personally measured by the authors in the past eight years are used. As major variables used in the prediction model, two groups of variables are configured for the geometric components of the envelope, which is a major path of airflow in a building and is where air infiltration and leakage occur. The two groups of variables represent (1) the areas of the individual components forming the envelope and (2) the connection lengths between different components of the envelope. For the effective prediction of airtightness, correlation analysis and multiple regression analysis were applied step by step in this study. The results of the correlation analysis indicated that the areas of the slab and the window are the area variables that present the greatest impact, whereas the perimeter length of the window is the connection length variable that presents the greatest impact. Using a multiple linear regression analysis method, airtightness prediction model equations can be derived, and it is found that the model with variables for area is able to predict airtightness more accurately compared to the two models derived from variables for connection length and all variables for area and connection length. Although the statistical approach in this study shows a limitation in that the prediction results may vary depending on the attributes and type of data collected by countries, the methodology and procedure in this study contribute to similar studies for making prediction models and finding the influence of variables in the future with high applicability and feasibility.


2020 ◽  
Vol 6 (7) ◽  
pp. 1243-1254
Author(s):  
Mohammad Abedin ◽  
Nafiseh Kiani ◽  
Esmail Shahrokhinasab ◽  
Sohrab Mokhtari

Rectangular Hollow Sections (RHS) because of their high resistance to tension, as well as compression, are commonly used as a bracing member with slotted gusset plate connections in steel structures. Since in this type of connection only part of the section contributes in transferring the tensile load to the gusset plate, shear lag failure may occur in the connection. The AISC specification decreases the effective section net area by a factor to consider the effect of shear lag for a limited connection configuration. This study investigates the effective parameters on the shear lag phenomenon for rectangular hollow section members connected at corners using a single concentric gusset plate. The results of the numerical analysis show that the connection length and connection eccentricity are the only effective parameters in the shear lag, and the effect of gusset plate thickness is negligible because of the symmetric connection. The ultimate tensile capacity of the suggested connection in this study were compared to the typical RHS connection presented in the AISC and the similar double angle sections connected at both legs. The comparison indicates that tensile performance of the suggested connection in this study because of its lower connection eccentricity is much higher than the typical slotted connection and double angle connections. Therefore, a new equation is suggested based on the finite element analyses to modify the AISC equation for these connections.


2020 ◽  
Vol 86 (3) ◽  
Author(s):  
B. Shanahan ◽  
P. Huslage

The island divertor topology of the Wendelstein 7-X (W7-X) scrape-off-layer exhibits regions of highly varying connection length. Here, we present drift-plane simulations of seeded filaments in regions of sharp transitions in parallel connection length – a parameter which dictates the propagation regime for plasma blobs. It is determined that a transition in parallel connection length alters the trajectory of filaments; filaments which enter regions of lower connection length are decelerated, and vice versa. It is also determined that if the lobes of a potential dipole created by diamagnetic drifts within the filament exist in two regions of distinct parallel connection length, the filament is then steered towards the region of higher connection length. The extreme case of a narrow region of varying connection length can also alter the trajectory of a filament, depending on the extent of this region. Finally, simulations mimicking the view from the W7-X gas puff imaging (GPI) diagnostic view plane are presented. It is determined that filaments in the view of the W7-X GPI diagnostic exhibit a predominantly poloidal propagation due to the radial electric field, since the radial velocity is relatively small.


2020 ◽  
Vol 230 ◽  
pp. 00013
Author(s):  
Marco Veranda ◽  
Daniele Bonfiglio ◽  
Susanna Cappello ◽  
Luis Chacòn ◽  
Dominique Frank Escande ◽  
...  

Nonlinear MHD modeling of toroidal pinch configurations for hot plasma magnetic confinement describes several features of the helical self-organization process, which is observed in both reversed-field pinches and tokamaks. It can also give a hint on why transport barriers are formed, by far one of the more interesting observations in experiments. The work tackles these two topics, helical self-organization and transport barriers formation - adding further information and examples to the results already presented in [Veranda, et al, Nucl.Fus. 60 016007 (2020)]. Regarding the topic of helical self-organization, a synthesis of the results obtained by a 3D nonlinear viscoresistive magnetohydrodynamics model will be presented. Modelling predicts a technique to “channel” reversed-field pinches into a chosen macroscopic helical shape and also predicts that the features of such helical self-organization, studied in the RFX-mod experiment in Padova, depend on two parameters only: plasma dissipation coefficients and edge radial magnetic field. They can be exploited to calm the natural tendency of reversed-field pinches to a “sawtoothing” dynamics, i.e. by decreasing visco-resistive dissipation and using helical edge fields not resonating with the plasma safety factor. Regarding the MHD description of the process of formation of transport barriers by magnetic chaos healing, we will describe the computation of Lagrangian structures, hidden in the weakly stochastic behaviour of magnetic field lines, acting as barriers to the transport. The radial position of such structures is observed to correspond to higher gradients of magnetic field lines connection length to the edge: this provides a further indication of their possible role in the formation of electron temperature barriers.


Sign in / Sign up

Export Citation Format

Share Document