demand controlled ventilation
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 37)

H-INDEX

18
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5541
Author(s):  
Alessandro Franco ◽  
Lorenzo Miserocchi ◽  
Daniele Testi

The paper analyzes and compares the perspectives for reducing the energy consumption associated to the operation of Heating Ventilation and Air Conditioning system for climatic control of large-size non-residential buildings. Three different control strategies are considered comparing the use of boiler and heat pumps as heating systems and analyzing the use of demand-controlled ventilation, operating on the effective occupancy of the building. The control strategies are applied to two different educational buildings with shapes representative of typical educational structures. The results of the analysis show how the energy consumption can be reduced up to 70%, shifting from the actual values of the energy intensity of over 300 kWh/m2 for year to values of less than 100 kWh/m2 per year. The significance of the energy savings achieved in such different buildings has led to the identification of a possible benchmark for HVAC systems in the next future years which could help reach the environmental targets in this sector.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3878
Author(s):  
Alessandro Franco ◽  
Lorenzo Miserocchi ◽  
Daniele Testi

One of the main elements for increasing energy efficiency in large-scale buildings is identified in the correct management and control of the Heating Ventilation and Air Conditioning (HVAC) systems, particularly those with Heat Pumps (HPs). The present study aimed to evaluate the perspective of energy savings achievable with the implementation of an optimal control of the HVAC with HPs. The proposed measures involve the use of a variable air volume system, demand-controlled ventilation, an energy-aware control of the heat recovery equipment, and an improved control of the heat pump and chiller supply water temperature. The analysis has been applied to an academic building located in Pisa and is carried out by means of dynamic simulation. The achieved energy saving can approach values of more than 80% if compared with actual plants based on fossil fuel technologies. A major part of this energy saving is linked to the use of heat pumps as thermal generators as well as to the implementation of an energy efficient ventilation, emphasizing the importance of such straightforward measures in reducing the energy intensity of large-scale buildings.


2021 ◽  
Vol 13 (10) ◽  
pp. 5446
Author(s):  
Akram Abdul Hamid ◽  
Jenny von Platten ◽  
Kristina Mjörnell ◽  
Dennis Johansson ◽  
Hans Bagge

Recently, there has been an increase in apartments with a large number of inhabitants, i.e., high residential density. This is partly due to a housing shortage in general but also increased migration, particularly in suburbs of major cities. This paper specifies issues that might be caused by high residential density by investigating the technical parameters influenced in Swedish apartments that are likely to have high residential density. Interviews with 11 employees at housing companies were conducted to identify issues that might be caused by high residential density. Furthermore, simulations were conducted based on extreme conditions described in the interviews to determine the impact on the energy use, indoor environmental quality, and moisture loads. In addition, the impact of measures to mitigate the identified issues was determined. Measures such as demand-controlled ventilation, increase of a constant ventilation rate, and moisture buffering are shown to reduce the risk for thermal discomfort, mold growth, and diminished indoor air quality; while still achieving a lower energy use than in a normally occupied apartment. The results of this study can be used by authorities to formulate incentives and/or recommendations for housing owners to implement measures to ensure good indoor environmental quality for all, irrespective of residential density conditions.


2021 ◽  
Vol 13 (4) ◽  
pp. 2325
Author(s):  
Alexander Rieser ◽  
Rainer Pfluger ◽  
Alexandra Troi ◽  
Daniel Herrera-Avellanosa ◽  
Kirsten Engelund Thomsen ◽  
...  

Historic building restoration and renovation requires sensitivity to the cultural heritage, historic value, and sustainability (i.e., building physics, energy efficiency, and comfort) goals of the project. Energy-efficient ventilation such as demand-controlled ventilation and heat recovery ventilation can contribute to the aforementioned goals, if ventilation concepts and airflow distribution are planned and realized in a minimally invasive way. Compared to new buildings, the building physics of historic buildings are more complicated in terms of hygrothermal performance. In particular, if internal insulation is applied, dehumidification is needed for robust and risk-free future use, while maintaining the building’s cultural value. As each ventilation system has to be chosen and adapted individually to the specific building, the selection of the appropriate system type is not an easy task. For this reason, there is a need for a scientifically valid, systematic approach to pair appropriate ventilation system and airflow distribution solutions with historical buildings. This paper provides an overview of the interrelationships between heritage conservation and the need for ventilation in energy-efficient buildings, regarding building physics and indoor environmental quality. Furthermore, a systematic approach based on assessment criteria in terms of heritage significance of the building, building physics (hygrothermal performance), and building services (energy efficiency, indoor air quality, and comfort rating) according to the standard EN 16883:2017 are applied.


Sign in / Sign up

Export Citation Format

Share Document