amorphous states
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 23)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Yoshika Takewaki ◽  
Takuji Ogawa ◽  
Yosuke Tani

Modulating the stimulus-responsiveness of a luminescent crystal is challenging owing to the complex interdependent nature of its controlling factors, such as molecular structure, molecular conformation, crystal packing, optical properties, and amorphization behavior. Herein, we demonstrate a halogen-exchange approach that disentangles this problem, thereby realizing the modulation of room-temperature phosphorescence-to-phosphorescence mechanochromism. Replacing the bromine atoms in a brominated thienyl diketone with chlorine atoms afforded isostructural crystals; i.e., molecules with different halogen atoms exhibited the same molecular conformation and crystal packing. Consequently, amorphization behavior toward mechanical stimulation was also the same, and the phosphorescence of amorphous states originated from the same conformer of each diketone. In contrast, the phosphorescence properties of each conformer were modulated differently, which is ascribable to heavy atom effects, resulting in the modulation of the mechanochromism. Thus, halogen exchange is a promising approach for modulating the stimulus-responsive photofunctions of crystals involving spin-forbidden processes.


2021 ◽  
Vol 29 (1) ◽  
pp. 45-56
Author(s):  
O. B. Lysenko ◽  
T. V. Kalinina ◽  
I. V. Zagorulko

For bulk-amorphizing alloys Мg65Сu25Y10 and Zr41,2 Тi13,8Сu12,5Ni10Ве22,5, the thickness and cooling rate of melt layers is calculated, which ensure the formation of X-ray amorphous structures typical for metallic glasses ( lC, vC ), and truly amorphous states without inclusions of «frozen-in crystallization centers» (lc*, vc* ). Correlation of the calculated values lC, vC with the known experimental estimates is C Cachieved. It is shown that both studied alloys demonstrate a predisposition to complete suppression of crystallization processes at physically correct values of the parameters lc* and vc* (10 μm; 1,3·107 K/s and 550 μm; 2,7·103 K/s for alloys based on Mg and Zr, respectively). It is concluded that the most significant factors controlling the tendency of materials to noncrystalline solidification are the decrease in the frequency of non-stationary nucleation with the increase in the rate of QLS, as well as relatively low <1018 m-3 s-1) maximum values of the rate of stationary crystallization centers formation.


Elements ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. 175-180 ◽  
Author(s):  
Chris J. Benmore ◽  
Martin C. Wilding

Liquids, glasses, and amorphous materials are ubiquitous in the Earth sciences and are intrinsic to a plethora of geological processes, ranging from volcanic activity, deep Earth melting events, metasomatic processes, frictional melting (pseudotachylites), lighting strikes (fulgurites), impact melting (tektites), hydrothermal activity, aqueous solution geochemistry, and the formation of dense high-pressure structures. However, liquids and glassy materials lack the long-range order that characterizes crystalline materials, and studies of their structure require a different approach to that of conventional crystallography. The pair distribution function is the neutron diffraction technique used to characterize liquid and amorphous states. When combined with atomistic models, neutron diffraction techniques can determine the properties and behavior of disordered structures.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 457
Author(s):  
Litipu Aihaiti ◽  
Kamale Tuokedaerhan ◽  
Beysen Sadeh ◽  
Min Zhang ◽  
Xiangqian Shen ◽  
...  

Titanium carbide (TiC) thin films were prepared by non-reactive simultaneous double magnetron sputtering. After deposition, all samples were annealed at different temperatures under high-vacuum conditions. This paper mainly discusses the influence of deposition methods and annealing temperatures on microstructure, surface topography, bonding states and electrical resistivity of TiC films. XRD (X-ray diffraction) results show that TiC thin films can still form crystals without annealing, and the crystallinity of thin films is improved after annealing. The estimated grain size of the TiC films varies from 8.5 nm to 14.7 nm with annealing temperature. It can be seen from SEM (scanning electron microscope) images that surfaces of the films are composed of irregular particles, and when the temperature reaches to 800 °C, the shape of the particles becomes spherical. Growth rate of film is about 30.8 nm/min. Oxygen-related peaks were observed in XPS (X-ray photoelectron spectroscopy) spectra, which is due to the absorption of oxygen atoms on the surface of the film when exposed to air. Raman spectra confirm the formation of TiC crystals and amorphous states of carbon. Resistivity of TiC films decreases monotonically from 666.73 to 86.01 μΩ·cm with the increase in annealing temperature. In brief, the TiC thin films prepared in this study show good crystallinity, thermal stability and low resistivity, which can meet the requirements of metal gate applications.


2021 ◽  
Author(s):  
Xingfei Wei ◽  
Zhi Wang ◽  
Zhiting Tian ◽  
Tengfei Luo

Abstract In this article, we review thermal transport in polymers with different morphologies from aligned fibers to bulk amorphous states. We survey early and recent efforts in engineering polymers with high thermal conductivity by fabricating polymers with large-scale molecular alignments. The experimentally realized extremely high thermal conductivity of polymer nanofibers are highlighted, and understanding of thermal transport physics from molecular simulations are discussed. We then transition to the discussion of bulk amorphous polymers with an emphasize on the physics of thermal transport and its relation with the conformation of molecular chains in polymers. We also discuss the current understanding of how the chemistry of polymers would influence thermal transport in amorphous polymers and some limited, but important chemistry-structural-property relationships. Lastly, challenges, perspectives and outlook of this field are presented. We hope this review will inspire more fundamental and applied research in the polymer thermal transport field to advance scientific understanding and engineering applications.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marco Fioroni ◽  
Nathan J. DeYonker

Heterogeneous phase astrochemistry plays an important role in the synthesis of complex organic matter (COM) as found on comets and rocky body surfaces like asteroids, planetoids, moons and planets. The proposed catalytic model is based on two assumptions: (a) siliceous rocks in both crystalline or amorphous states show surface-exposed defective centers such as siloxyl (Si-O•) radicals; (b) the second phase is represented by gas phase CO molecules, an abundant C1 building block found in space. By means of quantum chemistry; (DFT, PW6B95/def2-TZVPP); the surface of a siliceous rock in presence of CO is modeled by a simple POSS (polyhedral silsesquioxane) where a siloxyl (Si-O•) radical is present. Four CO molecules have been consecutively added to the Si-O• radical and to the nascent polymeric CO (pCO) chain. The first CO insertion shows no activation free energy with ΔG200K = −21.7 kcal/mol forming the SiO-CO• radical. The second and third CO insertions show ΔG200K‡ ≤ 10.5 kcal/mol. Ring closure of the SiO-CO-CO• (oxalic anhydride) moiety as well as of the SiO-CO-CO-CO• system (di-cheto form of oxetane) are thermodynamically disfavored. The last CO insertion shows no free energy of activation resulting in the stable five member pCO ring, precursor to 1,4-epoxy-1,2,3-butanone. Hydrogenation reactions of the pCO have been considered on the SiO oxygen or on the carbons and oxygens of the pCO chains. The formation of the reactive aldehyde SiO-CHO on the siliceous surface is possible. In principle, the complete hydrogenation of the (CO)1−4 series results in the formation of methanol and polyols. Furthermore, all the SiO-pCO intermediates and the lactone 1,4-epoxy-1,2,3-butanone product in its radical form can be important building blocks in further polymerization reactions and/or open ring reactions with H (aldehydes, polyols) or CN (chetonitriles), resulting in highly reactive multi-functional compounds contributing to COM synthesis.


CrystEngComm ◽  
2021 ◽  
Author(s):  
A. Sivakumar ◽  
S. Sahaya Jude Dhas ◽  
Abdulrahman Ibrahim Almansour ◽  
Raju Kumar ◽  
Natarajan Arumugam ◽  
...  

In this communication, we report the switchable phase transition occurring between crystalline (C) and amorphous (A) states of CuSO4.5H2O influenced by dynamic shock waves and the results have been evaluated...


2020 ◽  
Vol 6 (51) ◽  
pp. eabb7171
Author(s):  
Hailong Liu ◽  
Weiling Dong ◽  
Hao Wang ◽  
Li Lu ◽  
Qifeng Ruan ◽  
...  

Materials that exhibit large and rapid switching of their optical properties in the visible spectrum hold the key to color-changing devices. Antimony trisulfide (Sb2S3) is a chalcogenide material that exhibits large refractive index changes of ~1 between crystalline and amorphous states. However, little is known about its ability to endure multiple switching cycles, its capacity for recording high-resolution patterns, nor the optical properties of the crystallized state. Unexpectedly, we show that crystalline Sb2S3 films that are just 20 nm thick can produce substantial birefringent phase retardation. We also report a high-speed rewritable patterning approach at subdiffraction resolutions (>40,000 dpi) using 780-nm femtosecond laser pulses. Partial reamorphization is demonstrated and then used to write and erase multiple microscale color images with a wide range of colors over a ~120-nm band in the visible spectrum. These solid-state, rapid-switching, and ultrahigh-resolution color-changing devices could find applications in nonvolatile ultrathin displays.


Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. 831-836
Author(s):  
X. Y. Li ◽  
Z. H. Jin ◽  
X. Zhou ◽  
K. Lu

Metals usually exist in the form of polycrystalline solids, which are thermodynamically unstable because of the presence of disordered grain boundaries. Grain boundaries tend to be eliminated through coarsening when heated or by transforming into metastable amorphous states when the grains are small enough. Through experiments and molecular dynamics simulations, we discovered a different type of metastable state for extremely fine-grained polycrystalline pure copper. After we reduced grain sizes to a few nanometers with straining, the grain boundaries in the polycrystals evolved into three-dimensional minimal-interface structures constrained by twin boundary networks. This polycrystalline structure that underlies what we call a Schwarz crystal is stable against grain coarsening, even when close to the equilibrium melting point. The polycrystalline samples also exhibit a strength in the vicinity of the theoretical value.


Sign in / Sign up

Export Citation Format

Share Document