template switch
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 20)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Dan Chen ◽  
Judit Z. Gervai ◽  
Ádám Póti ◽  
Eszter Németh ◽  
Zoltán Szeltner ◽  
...  

AbstractDefects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch–mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency–specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sofya K. Garushyants ◽  
Igor B. Rogozin ◽  
Eugene V. Koonin

AbstractThe appearance of multiple new SARS-CoV-2 variants during the COVID-19 pandemic is a matter of grave concern. Some of these variants, such as B.1.617.2, B.1.1.7, and B.1.351, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the Spike (S) protein is thought to be a determinant of SARS-CoV-2 virulence. Here, we identify 346 unique inserts of different lengths in SARS-CoV-2 genomes and present evidence that these inserts reflect actual virus variance rather than sequencing artifacts. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. At least three inserts in the N-terminal domain of the S protein are predicted to lead to escape from neutralizing antibodies, whereas other inserts might result in escape from T-cell immunity. Thus, inserts in the S protein can affect its antigenic properties and merit monitoring.


2021 ◽  
Author(s):  
Ari Löytynoja

Variation within human genomes is distributed unevenly and variants show spatial clustering. DNA-replication related template switching is a poorly known mutational mechanism capable of causing major chromosomal rearrangements as well as creating short inverted sequence copies that appear as local mutation clusters in sequence comparisons. We reanalyzed haplotype-resolved genome assemblies representing 25 human populations and multinucleotide variants aggregated from 140,000 human sequencing experiments. We found local template switching to explain thousands of complex mutation clusters across the human genome, the loci segregating within and between populations with a small number appearing as de novo mutations. We developed computational tools for genotyping candidate template switch loci using short-read sequencing data and for identification of template switch events using both short-read data and genotype data. These tools will enable building a catalogue of affected loci and studying the cellular mechanisms behind template switching both in healthy organisms and in disease. Strikingly, we noticed that widely-used analysis pipelines for short-read sequencing data - capable of identifying single nucleotide changes - may miss TSM-origin inversions of tens of base pairs, potentially invalidating medical genetic studies searching for causative alleles behind genetic diseases.


2021 ◽  
Author(s):  
Bingyu Yan ◽  
Srishti Chakravorty ◽  
Carmen Mirabelli ◽  
Luopin Wang ◽  
Jorge L. Trujillo-Ochoa ◽  
...  

High throughput sequencing reads from virally infected cells provide detailed information about both the infected host cells and invading viruses (1). For example, RNA-sequencing techniques from infected cells contains reads that unequivocally align to either the host or the viral transcriptomes, enabling quantification of host and viral gene expressions (2). Occasionally, there are reads with split characteristics, having one part (e.g., the 5’ end) unambiguously matching the host and another part (e.g., the 3’ end) clearly matching the viral genomes. The split characteristic with unambiguous matching on either part is the key here, typically requiring convincing stretches of sequence matches such as >30bp that we used in our analysis (3). Such reads are termed host-virus chimeric reads (HVCRs). Indeed, HVCRs that surpass statistical reproducibility and signal-to-noise standards might carry novel insights into the biology of host-virus interactions (4, 5). Thus, it is important to unambiguously detect statistically rigorous and biologically relevant HVCRs. We and others have shown that detection of relevant HVCRs is complicated by unfaithful reverse-transcriptase and polymerase enzymes that template-switch during typical high throughput sequencing library preparation protocols (6–9).


Author(s):  
Joseph A Stewart ◽  
Michael B Hillegass ◽  
Joseph H Oberlitner ◽  
Ellen M Younkin ◽  
Beth F Wasserman ◽  
...  

Abstract Long-tract gene conversions (LTGC) can result from the repair of collapsed replication forks, and several mechanisms have been proposed to explain how the repair process produces this outcome. We studied LTGC events produced from repair collapsed forks at yeast fragile site FS2. Our analysis included chromosome sizing by contour-clamped homogeneous electric field (CHEF) electrophoresis, next-generation whole genome sequencing, and Sanger sequencing across repair event junctions. We compared the sequence and structure of LTGC events in our cells to the expected qualities of LTGC events generated by proposed mechanisms. Our evidence indicates that some LTGC events arise from half-crossover during BIR, some LTGC events arise from gap repair, and some LTGC events can be explained by either gap repair or “late” template switch during BIR. Also based on our data, we propose that models of collapsed replication forks be revised to show not a one-end double-strand break (DSB), but rather a two-end DSB in which the ends are separated in time and subject to gap repair.


2021 ◽  
Author(s):  
Alfred M. Lentzsch ◽  
Jennifer L. Stamos ◽  
Jun Yao ◽  
Rick Russell ◽  
Alan M. Lambowitz

Reverse transcriptases (RTs) can template switch during cDNA synthesis, enabling them to join discontinuous nucleic acid sequences. Template switching plays crucial roles in retroviral replication and recombination, is used for adapter addition in RNA-seq, and may contribute to retroelement fitness by enabling continuous cDNA synthesis on damaged templates. Here, we determined an X-ray crystal structure of a template-switching complex of a group II intron RT bound simultaneously to an acceptor RNA and donor RNA template/DNA heteroduplex with a 1-nt 3'-DNA overhang. The latter mimics a completed cDNA after non-templated addition (NTA) of a nucleotide complementary to the 3' nucleotide of the acceptor as required for efficient template switching. The structure showed that the 3' end of the acceptor RNA binds in a pocket formed by an N-terminal extension (NTE) present in non-long-terminal-repeat (LTR)-retroelement RTs and the RT fingertips loop, with the 3' nucleotide of the acceptor base paired to the 1-nt 3'-DNA overhang and its penultimate nucleotide base paired to the incoming dNTP at the RT active site. Analysis of structure-guided mutations identified amino acids that contribute to acceptor RNA binding and a phenylalanine near the RT active site that mediates NTA. Mutation of the latter residue decreased multiple sequential template switches in RNA-seq. Our results provide new insights into the mechanisms of template switching and NTA by RTs, suggest how these reactions could be improved for RNA-seq, and reveal common structural features for template switching by non-LTR-retroelement RTs and viral RNA-dependent RNA polymerases.


2021 ◽  
Author(s):  
Sofiya K Garushyants ◽  
Igor B Rogozin ◽  
Eugene V. Koonin

The appearance of multiple new SARS-CoV-2 variants during the winter of 2020-2021 is a matter of grave concern. Some of these new variants, such as B.1.351 and B.1.1.17, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the COVID-19 pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on point nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the spike protein is thought to be a determinant of SARS-CoV-2 virulence and other inserts might have contributed to coronavirus pathogenicity as well. Here, we investigate insertions in SARS-CoV-2 genomes and identify 141 unique inserts of different lengths. We present evidence that these inserts reflect actual virus variance rather than sequencing errors. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. We show that inserts in the Spike glycoprotein can affect its antigenic properties and thus have to be monitored. At least, two inserts in the N-terminal domain of the Spike (ins246DSWG and ins15ATLRI) that were first detected in January 2021 are predicted to lead to escape from neutralizing antibodies whereas other inserts might result in escape from T-cell immunity.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009221
Author(s):  
Conor R. Walker ◽  
Aylwyn Scally ◽  
Nicola De Maio ◽  
Nick Goldman

Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes. Using robust statistics derived from evolutionary genomic simulations, we show that template switch events have been widespread in the evolution of the great apes’ genomes and provide a parsimonious explanation for the presence of many complex mutation clusters in their phylogenetic context. Larger-scale mechanisms of genome rearrangement are typically associated with structural features around breakpoints, and accordingly we show that atypical patterns of secondary structure formation and DNA bending are present at the initial template switch loci. Our methods improve on previous non-probabilistic approaches for computational detection of template switch mutations, allowing the statistical significance of events to be assessed. By specifying realistic evolutionary parameters based on the genomes and taxa involved, our methods can be readily adapted to other intra- or inter-species comparisons.


Author(s):  
Александр Андреевич Гордеев ◽  
Елена Владимировна Четверина ◽  
Марина Витальевна Фалалеева ◽  
Александр Борисович Четверин

Работа посвящена исследованию формирования ложных химерных кДНК в результате смены матриц обратной транскриптазой. Показано, что, изменяя ряд параметров реакции обратной транскрипции, можно существенно уменьшить частоту ложноположительных результатов при выявлении истинных химерных РНК. Полученные результаты позволяют улучшить качество анализа транскриптомов и диагностики заболеваний, ассоциированных с образованием химерных РНК. This work is aimed at the study of formation of false chimeric cDNA as a result of template switch by reverse transcriptase. It is shown that by manipulating a number of parameters of the reverse transcription reaction, it is possible to significantly reduce the frequency of false-positives in the detection of true chimeric RNAs. The results allow to improve the quality of the analysis of transcriptomes and of the diagnostics of diseases associated with the formation of chimeric RNAs.


2020 ◽  
Author(s):  
Conor R. Walker ◽  
Aylwyn Scally ◽  
Nicola De Maio ◽  
Nick Goldman

Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes. Using robust statistics derived from evolutionary genomic simulations, we show that template switch events have been widespread in the evolution of the great apes’ genomes and provide a parsimonious explanation for the presence of many complex mutation clusters in their phylogenetic context. Larger-scale mechanisms of genome rearrangement are typically associated with structural features around breakpoints, and accordingly we show that atypical patterns of secondary structure formation and DNA bending are present at the initial template switch loci. Our methods improve on previous non-probabilistic approaches for computational detection of template switch mutations, allowing the statistical significance of events to be assessed. By specifying realistic evolutionary parameters based on the genomes and taxa involved, our methods can be readily adapted to other intra- or inter-species comparisons.


Sign in / Sign up

Export Citation Format

Share Document