cooperative positioning
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 74)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 13 (24) ◽  
pp. 4987
Author(s):  
Chengkai Tang ◽  
Chen Wang ◽  
Lingling Zhang ◽  
Yi Zhang ◽  
Houbing Song

Positioning information is the cornerstone of a new generation of electronic information technology applications represented by the Internet of Things and smart city. However, due to various environmental electromagnetic interference, building shielding, and other factors, the positioning source can fail. Cooperative positioning technology can realize the sharing of positioning information and make up for the invalid positioning source. When one node in the cooperative positioning network has error, the positioning stability of all nodes in the whole cooperative network will be significantly reduced, but the positioning probability information technology can effectively reduce the impact of mutation error. Based on this idea, this paper proposes an information-geometry-assisted distributed algorithm for probabilistic cooperative fusion positioning (IG-CP) of navigation information. The position information of different types of navigation sources is utilized to establish a probability density model, which effectively reduces the influence of a single position error on the whole cooperative position network. Combined with the nonlinear fitting characteristics of the information geometric manifold, mapping and fusion of the ranging information between cooperative nodes on the geometric manifold surface are conducted to achieve cooperative positioning, which can effectively improve the stability of the positioning results. The proposed algorithm is simulated and analyzed in terms of the node positioning error, ranging error, convergence speed, and distribution of the cooperative positioning network. The simulation results show that our proposed cooperative positioning algorithm can effectively improve the positioning stability and display better positioning performance.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8028
Author(s):  
Dongqing Zhao ◽  
Dongmin Wang ◽  
Minzhi Xiang ◽  
Jinfei Li ◽  
Chaoyong Yang ◽  
...  

The wide use of cooperative missions using multiple unmanned platforms has made relative distance information an essential factor for cooperative positioning and formation control. Reducing the range error effectively in real time has become the main technical challenge. We present a new method to deal with ranging errors based on the distance increment (DI). The DI calculated by dead reckoning is used to smooth the DI obtained by the cooperative positioning, and the smoothed DI is then used to detect and estimate the non-line-of-sight (NLOS) error as well as to smooth the observed values containing random noise in the filtering process. Simulation and experimental results show that the relative accuracy of NLOS estimation is 8.17%, with the maximum random error reduced by 40.27%. The algorithm weakens the influence of NLOS and random errors on the measurement distance, thus improving the relative distance precision and enhancing the stability and reliability of cooperative positioning.


2021 ◽  
Vol 13 (23) ◽  
pp. 4858
Author(s):  
Andrea Masiero ◽  
Charles Toth ◽  
Jelena Gabela ◽  
Guenther Retscher ◽  
Allison Kealy ◽  
...  

The availability of global navigation satellite systems (GNSS) on consumer devices has caused a dramatic change in every-day life and human behaviour globally. Although GNSS generally performs well outdoors, unavailability, intentional and unintentional threats, and reliability issues still remain. This has motivated the deployment of other complementary sensors in such a way that enables reliable positioning, even in GNSS-challenged environments. Besides sensor integration on a single platform to remedy the lack of GNSS, data sharing between platforms, such as in collaborative positioning, offers further performance improvements for positioning. An essential element of this approach is the availability of internode measurements, which brings in the strength of a geometric network. There are many sensors that can support ranging between platforms, such as LiDAR, camera, radar, and many RF technologies, including UWB, LoRA, 5G, etc. In this paper, to demonstrate the potential of the collaborative positioning technique, we use ultra-wide band (UWB) transceivers and vision data to compensate for the unavailability of GNSS in a terrestrial vehicle urban scenario. In particular, a cooperative positioning approach exploiting both vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) UWB measurements have been developed and tested in an experiment involving four cars. The results show that UWB ranging can be effectively used to determine distances between vehicles (at sub-meter level), and their relative positions, especially when vision data or a sufficient number of V2V ranges are available. The presence of NLOS observations is one of the principal factors causing a decrease in the UWB ranging performance, but modern machine learning tools have shown to be effective in partially eliminating NLOS observations. According to the obtained results, UWB V2I can achieve sub-meter level of accuracy in 2D positioning when GNSS is not available. Combining UWB V2I and GNSS as well V2V ranging may lead to similar results in cooperative positioning. Absolute cooperative positioning of a group of vehicles requires stable V2V ranging and that a certain number of vehicles in the group are provided with V2I ranging data. Results show that meter-level accuracy is achieved when at least two vehicles in the network have V2I data or reliable GNSS measurements, and usually when vehicles lack V2I data but receive V2V ranging to 2–3 vehicles. These working conditions typically ensure the robustness of the solution against undefined rotations. The integration of UWB with vision led to relative positioning results at sub-meter level of accuracy, an improvement of the absolute positioning cooperative results, and a reduction in the number of vehicles required to be provided with V2I or GNSS data to one.


2021 ◽  
Author(s):  
Xiang Chen ◽  
Xing Wang ◽  
Jundi Wang ◽  
You 王. Chen

Author(s):  
Xue Liu ◽  
Tangtao Yang ◽  
Haiyang Chen ◽  
Tony Z. Qiu

With the rapid development of intelligent transportation systems and connected vehicle (CV) technology, vehicle-to-infrastructure communication technologies have provided new solutions to traditional traffic safety and efficiency issues. However, the current intelligent CVs often provide positioning services only through a single GPS. These modules’ positioning accuracy can be insufficient to support the safety and reliability of security applications. The question arises of how to enhance GPS positioning accuracy in a CV environment without adding additional equipment and using only the information that existing CV devices can access. This paper proposes a roadside unit (RSU)-assisted GPS-RSS (received signal strength) cooperative positioning method for a CV environment. The rough position information from GPS is combined with RSS ranging and dead reckoning to obtain preliminary position estimated coordinates of the CV. Bayesian filtering is performed to obtain a more accurate preliminary position estimate. The final position estimated coordinates, obtained after data fusion, are combined with the high-precision map data (MAP) sent by the RSU to match the lane where the vehicle is located. Simulation and field tests verify each other, and the results show that the lane positioning accuracy of GPS can be improved by 21% within the range from the RSU to the CV’s on-board unit.


2021 ◽  
Author(s):  
Junqi Qu ◽  
Gongwu Sun ◽  
Jun Zhang ◽  
Xinguang Li ◽  
Ying Mao ◽  
...  

2021 ◽  
Author(s):  
Alex Minetto ◽  
Maria Chiara Bello ◽  
Fabio Dovis

<div>In recent years positioning and navigation capabilities in mobile devices have become essential to the evergrowing number of position-related smart applications. Global Navigation Satellite System (GNSS) constitutes the provider for geo-localization, therefore consumer-grade, embedded GNSS receivers have become ubiquitous in mobile smart devices. Among these, smartphones play a dominant role in enabling such modern services based on position information. However, GNSS positioning shows several weaknesses in urban contexts where mobile smart devices are massively diffused. Indeed, the limited sky visibility and multipath scattering induced by buildings severely threat the quality of the final solution. Two main ingredients can enable innovative collaborative strategies capable to increase the robustness of GNSS navigation: The availability of raw GNSS measurements which have been recently disclosed in ultra-low cost smartphone chipsets and the ubiquitous connectivity provided by modern low-latency, network infrastructures allowing for near-real-time exchange of data. This work presents the architecture of a Proof Of Concept designed to demonstrate the feasibility of a GNSS-only Cooperative Positioning among networked smartphones equipped with GNSS receivers. The test campaign presented in this work assessed the feasibility of the approach over 4G/LTE network connectivity and an average accuracy improvement over the 40%.</div>


Sign in / Sign up

Export Citation Format

Share Document