beta toxin
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 13)

H-INDEX

29
(FIVE YEARS 2)

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 893
Author(s):  
Basma Tarek ◽  
Julia Bruggisser ◽  
Filippo Cattalani ◽  
Horst Posthaus

Beta toxin (CPB) is a small hemolysin beta pore-forming toxin (β-PFT) produced by Clostridium perfringens type C. It plays a central role in the pathogenesis of necro-hemorrhagic enteritis in young animals and humans via targeting intestinal endothelial cells. We recently identified the membrane protein CD31 (PECAM-1) as the receptor for CPB on mouse endothelial cells. We now assess the role of CD31 in CPB cytotoxicity against human endothelial and monocytic cells using a CRISPR/Cas9 gene knockout and an antibody blocking approach. CD31 knockout human endothelial and monocytic cells were resistant to CPB and CPB oligomers only formed in CD31-expressing cells. CD31 knockout endothelial and monocytic cells could be selectively enriched out of a polyclonal cell population by exposing them to CPB. Moreover, antibody mediated blocking of the extracellular Ig6 domain of CD31 abolished CPB cytotoxicity and oligomer formation in endothelial and monocytic cells. In conclusion, this study confirms the role of CD31 as a receptor of CPB on human endothelial and monocytic cells. Specific interaction with the CD31 molecule can thus explain the cell type specificity of CPB observed in vitro and corresponds to in vivo observations in naturally diseased animals.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 566
Author(s):  
Nayra F. Q. R. Freitas ◽  
Denis Y. Otaka ◽  
Cleideanny C. Galvão ◽  
Dayane M. de Almeida ◽  
Marcos R. A. Ferreira ◽  
...  

In horses, Clostridium perfringens is associated with acute and fatal enterocolitis, which is caused by a beta toxin (CPB), and myonecrosis, which is caused by an alpha toxin (CPA). Although the most effective way to prevent these diseases is through vaccination, specific clostridial vaccines for horses against C. perfringens are not widely available. The aim of this study was to pioneer the immunization of horses with three different concentrations (100, 200 and 400 µg) of C. perfringens recombinant alpha (rCPA) and beta (rCPB) proteins, as well as to evaluate the humoral immune response over 360 days. Recombinant toxoids were developed and applied to 50 horses on days 0 and 30. Those vaccines attempted to stimulate the production of alpha antitoxin (anti-CPA) and beta antitoxin (anti-CPB), in addition to becoming innocuous, stable and sterile. There was a reduction in the level of neutralizing anti-CPA and anti-CPB antibodies following the 60th day; therefore, the concentrations of 200 and 400 µg capable of inducing a detectable humoral immune response were not determined until day 180. In practical terms, 200 µg is possibly the ideal concentration for use in the veterinary industry’s production of vaccines against the action of C. perfringens in equine species.


2021 ◽  
Author(s):  
Iman Mehdizadeh Gohari ◽  
Jihong Li ◽  
Bruce A. McClane

Clostridium perfringens toxin production is often regulated by the Agr-like quorum sensing (QS) system signaling the VirS/VirR two-component regulatory system (TCRS), which consists of the VirS membrane sensor histidine kinase and the VirR response regulator. VirS/VirR is known to directly control expression of some genes by binding to a DNA binding motif consisting of two VirR boxes located within 500 bp of the target gene start codon. Alternatively, the VirS/VirR system can indirectly regulate production levels of other proteins by increasing expression of a small regulatory RNA (VR-RNA). Previous studies demonstrated that beta toxin (CPB) production by C. perfringens type B and C strains is positively-regulated by both the Agr-like QS and VirS/VirR TCRS, but the mechanism has been unclear. The current study first inactivated the vrr gene encoding VR-RNA to show that VirS/VirR regulation of cpb expression does not involve VR-RNA. Subsequently, bioinformatic analyses identified a potential VirR binding motif, along with a predicted strong promoter, ∼1.4 kb upstream of the cpb open reading frame (ORF). Two insertion sequences were present between this VirR binding motif/promoter region and the cpb ORF. PCR screening of a collection of strains carrying cpb showed that the presence and sequence of this VirR binding motif/promoter is highly conserved among CPB-producing strains. RT-PCR and a GusA reporter assay showed this VirR binding motif is important for regulating CPB producion. These findings indicate that VirS/VirR directly regulates cpb expression via VirS binding to a VirR binding motif located unusually distant from the cpb start codon. IMPORTANCE Clostridium perfringens beta toxin (CPB) is only produced by type B and C strains. Production of CPB is essential for the pathogenesis of type C-associated infections, which include hemorrhagic necrotizing enteritis and enterotoxemia in both humans and animals. In addition, CPB can synergize with other toxins during C. perfringens gastrointestinal diseases. CPB toxin production is cooperatively regulated by the Agr-like quorum sensing (QS) system and the VirS/VirR two-component regulatory system. This study now reports that the VirS/VirR regulatory cascade directly controls expression of the cpb gene via a process involving a VirR box binding motif located unusually far (∼1.4 kb) upstream of the cpb ORF. This study provides a better understanding of the regulatory mechanisms for CPB production by the VirS/VirR regulatory cascade.


2021 ◽  
Vol 12 ◽  
Author(s):  
Renae R. Geier ◽  
Thomas G. Rehberger ◽  
Alexandra H. Smith

Clostridium perfringens is an opportunistic pathogenic bacterium that infects both animals and humans. Clostridium perfringens genomes encode a diverse array of toxins and virulence proteins, which continues to expand as more genomes are sequenced. In this study, the genomes of 44 C. perfringens strains isolated from intestinal sections of diseased cattle and from broiler chickens from diseased and healthy flocks were sequenced. These newly assembled genomes were compared to 141 publicly available C. perfringens genome assemblies, by aligning known toxin and virulence protein sequences in the assemblies using BLASTp. The genes for alpha toxin, collagenase, a sialidase (nanH), and alpha-clostripain were present in at least 99% of assemblies analyzed. In contrast, beta toxin, epsilon toxin, iota toxin, and binary enterotoxin of toxinotypes B, C, D, and E were present in less than 5% of assemblies analyzed. Additional sequence variants of beta2 toxin were detected, some of which were missing the leader or signal peptide sequences and therefore likely not secreted. Some pore-forming toxins involved in intestinal diseases were host-associated, the netB gene was only found in avian isolates, while netE, netF, and netG were only present in canine and equine isolates. Alveolysin was positively associated with canine and equine strains and only present in a single monophyletic clade. Strains from ruminant were not associated with known virulence factors and, except for the food poisoning associated clade, were present across the phylogenetic diversity identified to date for C. perfringens. Many C. perfringens strains associated with food poisoning lacked the genes for hyaluronidases and sialidases, important for attaching to and digesting complex carbohydrates found in animal tissues. Overall, the diversity of virulence factors in C. perfringens makes these species capable of causing disease in a wide variety of hosts and niches.


Anaerobe ◽  
2021 ◽  
Vol 69 ◽  
pp. 102326
Author(s):  
Rafael Rodrigues Rodrigues ◽  
Marcos Roberto Alves Ferreira ◽  
Rafael Amaral Donassolo ◽  
Mariliana Luiza Ferreira Alves ◽  
Jaqueline Freitas Motta ◽  
...  

Gene Reports ◽  
2021 ◽  
pp. 101060
Author(s):  
Mina Alinezhad ◽  
Javid Sadeghi ◽  
Mohammad Hussein Soroush ◽  
Delara Laghousi ◽  
Masoud Nikanfar ◽  
...  

2020 ◽  
pp. 030098582097178
Author(s):  
Llorenç Grau-Roma ◽  
Mauricio Navarro ◽  
Sohvi Blatter ◽  
Christian Wenker ◽  
Sonja Kittl ◽  
...  

Several outbreaks of necrotic enteritis-like disease in lorikeets, from which Clostridium perfringens was consistently isolated, are described. All lorikeets had acute, segmental, or multifocal fibrinonecrotizing inflammatory lesions in the small and/or the large intestine, with intralesional gram-positive rods. The gene encoding C. perfringens alpha toxin was detected by PCR (polymerase chain reaction) on formalin-fixed, paraffin-embedded (FFPE) tissues in 20 out of 24 affected lorikeets (83%), but it was not amplified from samples of any of 10 control lorikeets ( P < .0001). The second most prevalent C. perfringens toxin gene detected was the beta toxin gene, which was found in FFPE from 7 out of 24 affected lorikeets (29%). The other toxin genes were detected inconsistently and in a relatively low number of samples. These cases seem to be associated with C. perfringens, although the specific type involved could not be determined.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Jihong Li ◽  
Bruce A. McClane

ABSTRACT Since both the Agr (accessory gene regulator)-like quorum sensing (QS) system and VirS/VirR (VirS/R) two-component regulatory system of Clostridium perfringens positively regulate production of several toxins, including C. perfringens beta toxin (CPB), it has been hypothesized the VirS membrane sensor protein is an Agr-like QS signaling peptide (SP) receptor. To begin evaluating whether VirS is an SP receptor, this study sequenced the virS gene in C. perfringens strains CN3685 and CN1795 because it was reported that agrB mutants of both strains increase CPB production in response to the pentapeptide 5R, likely the natural SP, but only the CN3685 agrB mutant responds to 8R, which is 5R plus a 3-amino-acid tail. This sequencing identified differences between the predicted VirS extracellular loop 2 (ECL2) of CN3685 versus that of CN1795. To explore if those ECL2 differences explain strain-related variations in SP sensitivity and support VirS as an SP receptor, virS agrB double-null mutants of each strain were complemented to swap which VirS protein they produce. CPB Western blotting showed that this complementation changed the natural responsiveness of each strain to 8R. A pulldown experiment using biotin-5R demonstrated that VirS can bind SP. To further support VirS:SP binding and to identify a VirS binding site for SP, a 14-mer peptide corresponding to VirS ECL2 was synthesized. This ECL2 peptide inhibited 5R signaling to agrB mutant and wild-type strains. This inhibition was specific, since a single N to D substitution in the ECL2 peptide abrogated these effects. Collectively, these results support VirS as an important SP receptor and may assist development of therapeutics. IMPORTANCE C. perfringens beta toxin (CPB) is essential for the virulence of type C strains, a common cause of fatal necrotizing enteritis and enterotoxemia in humans and domestic animals. Production of CPB, as well as several other C. perfringens toxins, is positively regulated by both the Agr-like QS system and the VirS/R two-component regulatory system. This study presents evidence that the VirS membrane sensor protein is a receptor for the AgrD-derived SP and that the second extracellular loop of VirS is important for SP binding. Understanding interactions between SP and VirS improves knowledge of C. perfringens pathogenicity and may provide insights for designing novel strategies to reduce C. perfringens toxin production during infections.


2020 ◽  
Vol 32 (2) ◽  
pp. 203-212 ◽  
Author(s):  
Horst Posthaus ◽  
Sonja Kittl ◽  
Basma Tarek ◽  
Julia Bruggisser

Clostridium perfringens type C causes severe and lethal necrotic enteritis (NE) in newborn piglets. NE is diagnosed through a combination of pathology and bacteriologic investigations. The hallmark lesion of NE is deep, segmental mucosal necrosis with marked hemorrhage of the small intestine. C. perfringens can be isolated from intestinal samples in acute cases but it is more challenging to identify pathogenic strains in subacute-to-chronic cases. Toxinotyping or genotyping is required to differentiate C. perfringens type C from commensal type A strains. Recent research has extended our knowledge about the pathogenesis of the disease, although important aspects remain to be determined. The pathogenesis involves rapid overgrowth of C. perfringens type C in the small intestine, inhibition of beta-toxin (CPB) degradation by trypsin inhibitors in the colostrum of sows, and most likely initial damage to the small intestinal epithelial barrier. CPB itself acts primarily on vascular endothelial cells in the mucosa and can also inhibit platelet function. Prevention of the disease is achieved by immunization of pregnant sows with C. perfringens type C toxoid vaccines, combined with proper sanitation on farms. For the implementation of prevention strategies, it is important to differentiate between disease-free and pathogen-free status of a herd. The latter is more challenging to maintain, given that C. perfringens type C can persist for a long time in the environment and in the intestinal tract of adult animals and thus can be distributed via clinically and bacteriologically inapparent carrier animals.


Sign in / Sign up

Export Citation Format

Share Document