wireless communications systems
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 52)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Demos Serghiou ◽  
Mohsen Khalily ◽  
Tim Brown ◽  
Rahim Tafazolli

The Terahertz (THz) band (0.1-3.0 THz) spans a great portion of the Radio Frequency (RF) spectrum that is mostly unoccupied and unregulated. It is a potential candidate for application in Sixth-Generation (6G) wireless networks as it has the capabilities of satisfying the high data rate and capacity requirements of future wireless communication systems. Profound knowledge of the propagation channel is crucial in communication systems design which nonetheless, is still at its infancy as channel modeling at THz frequencies has been mostly limited to characterizing fixed Point-to-Point (P2P) scenarios up to 300 GHz. Provided the technology matures enough and models adapt to the distinctive characteristics of the THz wave, future wireless communications systems will enable a plethora of new use cases and applications to be realized in addition to delivering higher spectral efficiencies that would ultimately enhance the Quality-of-Service (QoS) to the end user. In this paper, we provide an insight into THz channel propagation characteristics, measurement capabilities and modeling methods along with recommendations that will aid in the development of future models in the THz band. We survey the most recent and important measurement campaigns and modeling efforts found in literature based on the use cases and system requirements identified. Finally, we discuss the challenges and limitations of measurements and modeling at such high frequencies and contemplate the future research outlook toward realizing the 6G vision.


2022 ◽  
Author(s):  
Demos Serghiou ◽  
Mohsen Khalily ◽  
Tim Brown ◽  
Rahim Tafazolli

The Terahertz (THz) band (0.1-3.0 THz) spans a great portion of the Radio Frequency (RF) spectrum that is mostly unoccupied and unregulated. It is a potential candidate for application in Sixth-Generation (6G) wireless networks as it has the capabilities of satisfying the high data rate and capacity requirements of future wireless communication systems. Profound knowledge of the propagation channel is crucial in communication systems design which nonetheless, is still at its infancy as channel modeling at THz frequencies has been mostly limited to characterizing fixed Point-to-Point (P2P) scenarios up to 300 GHz. Provided the technology matures enough and models adapt to the distinctive characteristics of the THz wave, future wireless communications systems will enable a plethora of new use cases and applications to be realized in addition to delivering higher spectral efficiencies that would ultimately enhance the Quality-of-Service (QoS) to the end user. In this paper, we provide an insight into THz channel propagation characteristics, measurement capabilities and modeling methods along with recommendations that will aid in the development of future models in the THz band. We survey the most recent and important measurement campaigns and modeling efforts found in literature based on the use cases and system requirements identified. Finally, we discuss the challenges and limitations of measurements and modeling at such high frequencies and contemplate the future research outlook toward realizing the 6G vision.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 170
Author(s):  
Yasser Albagory ◽  
Fahad Alraddady

Antenna arrays have become an essential part of most wireless communications systems. In this paper, the unwanted sidelobes in the symmetric linear array power pattern are reduced efficiently by utilizing a faster simultaneous sidelobes processing algorithm, which generates nulling sub-beams that are adapted to control and maintain steep convergence toward lower sidelobe levels. The proposed algorithm is performed using adaptive damping and heuristic factors which result in learning curve perturbations during the first few loops of the reduction process and is followed by a very steep convergence profile towards deep sidelobe levels. The numerical results show that, using the proposed adaptive sidelobes simultaneous reduction algorithm, a maximum sidelobe level of −50 dB can be achieved after only 10 iteration loops (especially for very large antenna arrays formed by 256 elements, wherein the processing time is reduced to approximately 25% of that required by the conventional fixed damping factor case). On the other hand, the generated array weights can be applied to practical linear antenna arrays under mutual coupling effects, which have shown very similar results to the radiation pattern of the isotropic antenna elements with very deep sidelobe levels and the same beamwidth.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Om Prakash Kumar ◽  
Pramod Kumar ◽  
Tanweer Ali ◽  
Pradeep Kumar ◽  
Shweta Vincent

Narrowband antennas fail to radiate short pulses of nano- or picosecond length over the broader band of frequencies. Therefore, Ultrawideband (UWB) technology has gained momentum over the past couple of years as it utilizes a wide range of frequencies, typically between 3.1–10.6 GHz. UWB antennas have been utilized for various applications such as ground-penetrating radars, disaster management through detection of unexploded mines, medical diagnostics, and commercial applications ranging from USB dongles to detection of cracks in highways and bridges. In the first section of the manuscript, UWB technology is detailed with its importance for future wireless communications systems. In the next section various types of UWB antennas and their design methodology are reviewed, and their important characteristics are highlighted. In section four the concept of a UWB notch antenna is presented. Here various methods to obtain the notch, such as slots, parasitic resonators, metamaterials, and filters are discussed in detail. In addition, various types of important notch antenna design with their technical specifications, advantages, and disadvantages are presented. Finally, the need of reconfigurable UWB notch antennas is discussed in the next section. Here various insight to the design of frequency reconfigurable notch antennas is discussed and presented. Overall, this article aims to showcase the beginnings of UWB technology, the reason for the emergence of notching in specific frequency bands, and ultimately the need for reconfiguring UWB antennas along with their usage.


YMER Digital ◽  
2021 ◽  
Vol 20 (10) ◽  
pp. 118-126
Author(s):  
Karthik Kumar Vaigandla ◽  
◽  
RadhaKrishna Karne ◽  
Allanki Sanyasi Rao ◽  
◽  
...  

Systematic analysis of systems with Multiple Inputs and Multiple Outputs (MIMO) is presented in this paper. MIMO systems and various techniques for decoupling are discussed, including their effect on performance. As wireless communications systems progress, the challenge is to deliver high-data-rate access with good quality of service (QOS). MIMO technology can also offer greater reliability by boosting the link due to increased spectral efficiency; this can be met by incorporating spatial multiplexing gains and antenna diversity gains. OFDM signals can be used with antenna arrays at both transmitter and receiver for maximum efficiency. As a result, we have MIMO-OFDM. A generalized predictive control for MIMO systems is considered in this paper. Stability and performance of the closed-loop system are measured by using frequency response indicators.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4112
Author(s):  
Fidel Alejandro Rodríguez-Corbo ◽  
Leyre Azpilicueta ◽  
Mikel Celaya-Echarri ◽  
Peio Lopez-Iturri ◽  
Ana V. Alejos ◽  
...  

The characterization of different vegetation/vehicle densities and their corresponding effects on large-scale channel parameters such as path loss can provide important information during the deployment of wireless communications systems under outdoor conditions. In this work, a deterministic analysis based on ray-launching (RL) simulation and empirical measurements for vehicle-to-infrastructure (V2I) communications for outdoor parking environments and smart parking solutions is presented. The study was carried out at a frequency of 28 GHz using directional antennas, with the transmitter raised above ground level under realistic use case conditions. Different radio channel impairments were weighed in, considering the progressive effect of first, the density of an incremental obstructed barrier of trees, and the effect of different parked vehicle densities within the parking lot. On the basis of these scenarios, large-scale parameters and temporal dispersion characteristics were obtained, and the effect of vegetation/vehicle density changes was assessed. The characterization of propagation impairments that different vegetation/vehicle densities can impose onto the wireless radio channel in the millimeter frequency range was performed. Finally, the results obtained in this research can aid communication deployment in outdoor parking conditions.


Sign in / Sign up

Export Citation Format

Share Document