robotic joints
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 1199 (1) ◽  
pp. 012069
Author(s):  
M Kočiško ◽  
M Pollák ◽  
A Vodilka ◽  
D Paulišin

Abstract At present, the industry is in a phase where there is an effort to maximize the automation of production processes. In many places, human power is being replaced by automated machines and industrial robots. Automation makes it possible to increase work efficiency, significantly reduce production costs and also increase the quality of the final product. A precondition for increasing the quality of production is to achieve high accuracy of specialized machines and industrial robots, resp. the accuracy of positioning of individual parts. Due to the drive system and the achieved speed, the gear unit includes a gearbox. Reducers used in robotic joints are the most complex subsystems of robots. For very precise applications, the designers will reach for the so-called backlash-free reducers for their characteristic properties (minimum values of backlash in teeth, angular transmission errors, hysteresis and others). Despite many positive properties, high-precision reducers also show their characteristic nonlinearities, which influence the behavior of the whole system and it is so important to know their behavior. Given these facts, this article deals with the design and implementation of mechatronic diagnostic equipment for the identification of nonlinearities, static and dynamic parameters, vibrodiagnostic measurements and measurements of the efficiency of bearing reducers.


2021 ◽  
pp. 1-30
Author(s):  
Veysel Erel ◽  
Alexandra Lindsay ◽  
Inderjeet Singh ◽  
Muthu Wijesundara

Abstract Soft robotics is projected to have a significant impact on healthcare, industry, and the military to deliver assistance in rehabilitation, daily living activities, repetitive motion tasks, and human performance augmentation. Many attempts have been made for application-specific robotic joints, robots, and exoskeletons using various actuator types, materials, and designs. The progress of creating soft robotic systems can be accelerated if a set of actuators with defined characteristics were developed, similar to conventional robotic actuators, which can be assembled to create desired systems including exoskeletons and end effectors. This work presents the design methodology of such a modular actuator, created with a novel corrugated diaphragm that can apply linear displacement, angular displacement, and force. This modular actuator approach allows for creating various robotic joints by arranging them into different configurations. The modular corrugated diaphragm actuator concept was validated through numerical simulation, fabrication, and testing. Linear displacement, angular displacement, and force characteristics were shown for a single module and in multi-module assemblies. Actuator assemblies that are configured in a serial and parallel manner were investigated to demonstrate the applicability and versatility of the concept of the modular corrugated diaphragm actuator for creating single and multi-DOF joints.


2021 ◽  
Author(s):  
Veysel Erel ◽  
Alexandra R. Lindsay ◽  
Inderjeet Singh ◽  
Muthu B. J. Wijesundara

Abstract Soft robotics is projected to have a significant impact on healthcare, industry, and the military to deliver assistance in rehabilitation, daily living activities, repetitive motion tasks, and human performance augmentation. Many attempts have been made for application-specific robotic joints, robots, and exoskeletons using various actuator types, materials, and designs. The progress of creating soft robotic systems can be accelerated if a set of actuators with defined characteristics were developed, similar to conventional robotic actuators, which can be assembled to create desired systems including exoskeletons and end effectors. This work presents such an attempt by designing a modular corrugated diaphragm actuator that can apply linear displacement, force, and bending motion. This modular actuator approach allows for creating various robotic joints by arranging them into different configurations. Numerical simulation, fabrication, and testing were carried out to evaluate the displacement, force, and bending characteristics of the corrugated diaphragm actuator as a single unit and in multi-unit arrays to understand their applicability for different scenarios. Actuator arrays that are configured in a serial and parallel manner were investigated. The results will be presented in terms of using this modular actuator concept to create single and multi-DOF joints, which will demonstrate the versatility of this modular actuator approach.


2021 ◽  
Author(s):  
Jiaming Fu ◽  
Dongming Gan

Abstract To co-work with humans, robotic mechanisms need to have variable stiffness with high rigidity for performance and low compliance for safe interactions. This paper introduces a reconfigurable variable-stiffness parallel beam (VSPB) which can be used in both robotic joints and links for variable compliance. The VSPB is a compliant cantilever mechanism with hollow parallel beams in the middle and solid connections at both ends. Stiffness adjusting can be realized by changing the cross-sectional area property of the hollow beam segment discretely through a bistable mechanism block or continuously by the block sliding. Detailed stiffness models of the two VSPB stiffness modes with the block on and off are derived using the approach of serially connected beam modeling and superposition combination. The developed model not only works for thin-walled flexure beams but also general thick beam models. The stiffness change relationship with various design parameters is investigated using the developed model and validated by finite element analysis (FEA) results. The correlation between parameters and errors between FEA and theoretical values is observed and analyzed to optimize the model. These methods and results provide a new concept and theoretical basis for developing new variable stiffness robotic mechanisms towards safe human-robot interaction applications.


2021 ◽  
Author(s):  
Roberto Pagani ◽  
Giovanni Legnani ◽  
Giovanni Incerti ◽  
Manuel Beschi ◽  
Monica Tiboni

2021 ◽  
Vol 12 (1) ◽  
pp. 333-343
Author(s):  
Lei Guo ◽  
Zeyu Wang ◽  
Yuan Song ◽  
Xianjie Shan ◽  
Dongming Gan

Abstract. Gear reducers are critical for speed and torque transmissions between motors and manipulators. With the development of robotic research, many new requirements, such as low speed and heavy load, have been proposed for the design of gear reducers used in the joints. To meet these challenges, here, we present the design of a new gear reducer based on a spherical motion sub-lever drive mechanism. Our lever-based gear reducer can transmit the speed and torque from the input shaft to the output shaft through a fixed-axis gear train transmission, lever transmission, and internal translational gear transmission. Compared with traditional gear reducers, our lever-based reducer has stronger load capacities and is suitable for low-speed and heavy-load scenarios. The design parameters of the lever drive mechanism were optimized via finite element analysis and a genetic algorithm, and the assembly of the lever drive mechanism was further simplified. We found the dimensions of the lever are critical for improving the overall performance of this reducer. In addition, the transmission ability of this reducer was demonstrated by a physical prototype. This reducer will find many applications in robotic joints, cranes, and mine hoists.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Renghao Liang ◽  
Guanghua Xu ◽  
Zhicheng Teng ◽  
Min Li ◽  
Sicong Zhang ◽  
...  
Keyword(s):  

Author(s):  
Mihailo P Lazarević ◽  
Petar D Mandić ◽  
Srđan Ostojić

Recently, calculus of general order [Formula: see text] has attracted attention in scientific literature, where fractional operators are often used for control issues and the modeling of the dynamics of complex systems. In this work, some attention will be devoted to the problem of viscous friction in robotic joints. The calculus of general order and the calculus of variations are utilized for the modeling of viscous friction which is extended to the fractional derivative of the angular displacement. In addition, to solve the output tracking problem of a robotic manipulator with three DOFs with revolute joints in the presence of model uncertainties, robust advanced iterative learning control (AILC) is introduced. First, a feedback linearization procedure of a nonlinear robotic system is applied. Then, the proposed intelligent feedforward-feedback AILC algorithm is introduced. The convergence of the proposed AILC scheme is established in the time domain in detail. Finally, simulations on the given robotic arm system confirm the effectiveness of the robust AILC method.


Author(s):  
Roberto Pagani ◽  
Giovanni Legnani ◽  
Giovanni Incerti ◽  
Manuel Beschi ◽  
Monica Tiboni

Abstract This paper presents a model that describes the effect of heat exchange on dynamic friction in the joints of an industrial robot. As concern the modeling of friction as a function of the rotation speed of the joint, a third degree polynomial is used. The coefficients of the polynomial, which depends on the temperature, are estimated by means of a suitable identification procedure. The proposed technique is simple to implement and economically convenient. Experimental tests have shown that the method here proposed, despite its simplicity, can estimate with good reliability the variations of friction that occur during the operation of an industrial robot due to thermal effects. Possible fields of application are the improvement of the friction compensation algorithms used for robot control systems and the prediction of energy consumption.


Sign in / Sign up

Export Citation Format

Share Document