sprouting resistance
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 2)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Raman Dhariwal ◽  
Colin W. Hiebert ◽  
Mark E. Sorrells ◽  
Dean Spaner ◽  
Robert J. Graf ◽  
...  

Abstract Background Pre-harvest sprouting (PHS) is a major problem for wheat production due to its direct detrimental effects on wheat yield, end-use quality and seed viability. Annually, PHS is estimated to cause > 1.0 billion USD in losses worldwide. Therefore, identifying PHS resistance quantitative trait loci (QTLs) is crucial to aid molecular breeding efforts to minimize losses. Thus, a doubled haploid mapping population derived from a cross between white-grained PHS susceptible cv AAC Innova and red-grained resistant cv AAC Tenacious was screened for PHS resistance in four environments and utilized for QTL mapping. Results Twenty-one PHS resistance QTLs, including seven major loci (on chromosomes 1A, 2B, 3A, 3B, 3D, and 7D), each explaining ≥10% phenotypic variation for PHS resistance, were identified. In every environment, at least one major QTL was identified. PHS resistance at most of these loci was contributed by AAC Tenacious except at two loci on chromosomes 3D and 7D where it was contributed by AAC Innova. Thirteen of the total twenty-one identified loci were located to chromosome positions where at least one QTL have been previously identified in other wheat genotype(s). The remaining eight QTLs are new which have been identified for the first time in this study. Pedigree analysis traced several known donors of PHS resistance in AAC Tenacious genealogy. Comparative analyses of the genetic intervals of identified QTLs with that of already identified and cloned PHS resistance gene intervals using IWGSC RefSeq v2.0 identified MFT-A1b (in QTL interval QPhs.lrdc-3A.1) and AGO802A (in QTL interval QPhs.lrdc-3A.2) on chromosome 3A, MFT-3B-1 (in QTL interval QPhs.lrdc-3B.1) on chromosome 3B, and AGO802D, HUB1, TaVp1-D1 (in QTL interval QPhs.lrdc-3D.1) and TaMyb10-D1 (in QTL interval QPhs.lrdc-3D.2) on chromosome 3D. These candidate genes are involved in embryo- and seed coat-imposed dormancy as well as in epigenetic control of dormancy. Conclusions Our results revealed the complex PHS resistance genetics of AAC Tenacious and AAC Innova. AAC Tenacious possesses a great reservoir of important PHS resistance QTLs/genes supposed to be derived from different resources. The tracing of pedigrees of AAC Tenacious and other sources complements the validation of QTL analysis results. Finally, comparing our results with previous PHS studies in wheat, we have confirmed the position of several major PHS resistance QTLs and candidate genes.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1749
Author(s):  
Hyeonso Ji ◽  
Yunji Shin ◽  
Chaewon Lee ◽  
Hyoja Oh ◽  
In Sun Yoon ◽  
...  

Next-generation sequencing technologies have enabled the discovery of numerous sequence variations among closely related crop varieties. We analyzed genome resequencing data from 24 Korean temperate japonica rice varieties and discovered 954,233 sequence variations, including 791,121 single nucleotide polymorphisms (SNPs) and 163,112 insertions/deletions (InDels). On average, there was one variant per 391 base-pairs (bp), a variant density of 2.6 per 1 kbp. Of the InDels, 10,860 were longer than 20 bp, which enabled conversion to markers resolvable on an agarose gel. The effect of each variant on gene function was predicted using the SnpEff program. The variants were categorized into four groups according to their impact: high, moderate, low, and modifier. These groups contained 3524 (0.4%), 27,656 (2.9%), 24,875 (2.6%), and 898,178 (94.1%) variants, respectively. To test the accuracy of these data, eight InDels from a pre-harvest sprouting resistance QTL (qPHS11) target region, four highly polymorphic InDels, and four functional sequence variations in known agronomically important genes were selected and successfully developed into markers. These results will be useful to develop markers for marker-assisted selection, to select candidate genes in map-based cloning, and to produce efficient high-throughput genome-wide genotyping systems for Korean temperate japonica rice varieties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lingli Li ◽  
Yingjun Zhang ◽  
Yong Zhang ◽  
Ming Li ◽  
Dengan Xu ◽  
...  

Preharvest sprouting (PHS) significantly reduces grain yield and quality. Identification of genetic loci for PHS resistance will facilitate breeding sprouting-resistant wheat cultivars. In this study, we constructed a genetic map comprising 1,702 non-redundant markers in a recombinant inbred line (RIL) population derived from cross Yangxiaomai/Zhongyou9507 using the wheat 15K single-nucleotide polymorphism (SNP) assay. Four quantitative trait loci (QTL) for germination index (GI), a major indicator of PHS, were identified, explaining 4.6–18.5% of the phenotypic variances. Resistance alleles of Qphs.caas-3AL, Qphs.caas-3DL, and Qphs.caas-7BL were from Yangxiaomai, and Zhongyou9507 contributed a resistance allele in Qphs.caas-4AL. No epistatic effects were detected among the QTL, and combined resistance alleles significantly increased PHS resistance. Sequencing and linkage mapping showed that Qphs.caas-3AL and Qphs.caas-3DL corresponded to grain color genes Tamyb10-A and Tamyb10-D, respectively, whereas Qphs.caas-4AL and Qphs.caas-7BL were probably new QTL for PHS. We further developed cost-effective, high-throughput kompetitive allele-specific PCR (KASP) markers tightly linked to Qphs.caas-4AL and Qphs.caas-7BL and validated their association with GI in a test panel of cultivars. The resistance alleles at the Qphs.caas-4AL and Qphs.caas-7BL loci were present in 72.2 and 16.5% cultivars, respectively, suggesting that the former might be subjected to positive selection in wheat breeding. The findings provide not only genetic resources for PHS resistance but also breeding tools for marker-assisted selection.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 997
Author(s):  
Tatsuro Suzuki ◽  
Takahiro Hara ◽  
Kenjiro Katsu

Buckwheat is recognized as an important traditional crop and supports local economies in several regions around the world. Buckwheat is used, for example, as a cereal grain, noodle and bread. In addition, buckwheat is also used as a sprout or a young seedling. For these foods, sprouting is an important characteristic that affects food quality. For foods made from buckwheat flour, pre-harvest sprouting may decrease yield, which also leads to the deterioration of noodle quality. Breeding buckwheat that is resistant to pre-harvest sprouting is therefore required. Germination and subsequent growth are also important characteristics of the quality of sprouts. Although buckwheat sprouts are the focus because they contain many functional compounds, such as rutin, several problems have been noted, such as thin hypocotyls and husks remaining on sprouts. To date, several new varieties have been developed to resolve these quality issues. In this review, we summarize and introduce research on the breeding of buckwheat related to quality, sprouting and subsequent sprout growth.


2021 ◽  
Vol 47 (11) ◽  
pp. 2080-2090
Author(s):  
Yi-Wen HUANG ◽  
Xu-Ran DAI ◽  
Hong-Wei LIU ◽  
Li YANG ◽  
Chun-Yan MAI ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xingyi Wang ◽  
Hui Liu ◽  
Kadambot H. M. Siddique ◽  
Guijun Yan

Abstract Background Pre-harvest sprouting (PHS) in wheat can cause severe damage to both grain yield and quality. Resistance to PHS is a quantitative trait controlled by many genes located across all 21 wheat chromosomes. The study targeted a large-effect quantitative trait locus (QTL) QPhs.ccsu-3A.1 for PHS resistance using several sets previously developed near-isogenic lines (NILs). Two pairs of NILs with highly significant phenotypic differences between the isolines were examined by RNA sequencing for their transcriptomic profiles on developing seeds at 15, 25 and 35 days after pollination (DAP) to identify candidate genes underlying the QTL and elucidate gene effects on PHS resistance. At each DAP, differentially expressed genes (DEGs) between the isolines were investigated. Results Gene ontology and KEGG pathway enrichment analyses of key DEGs suggested that six candidate genes underlie QPhs.ccsu-3A.1 responsible for PHS resistance in wheat. Candidate gene expression was further validated by quantitative RT-PCR. Within the targeted QTL interval, 16 genetic variants including five single nucleotide polymorphisms (SNPs) and 11 indels showed consistent polymorphism between resistant and susceptible isolines. Conclusions The targeted QTL is confirmed to harbor core genes related to hormone signaling pathways that can be exploited as a key genomic region for marker-assisted selection. The candidate genes and SNP/indel markers detected in this study are valuable resources for understanding the mechanism of PHS resistance and for marker-assisted breeding of the trait in wheat.


2020 ◽  
Author(s):  
Xinran Cheng ◽  
Chang Gao ◽  
Xue Liu ◽  
Dongmei Xu ◽  
Xu Pan ◽  
...  

Abstract Background: Seed dormancy and germination determine wheat pre-harvest sprouting resistance and thereby affect grain yield and quality. Arabidopsis VQ genes have been shown to influence seed germination; however, the functions of wheat VQ genes have not been characterized. Results: In this study, we identified 65 TaVQ genes in common wheat and named them TaVQ1–65. We identified 48 paralogous pairs, 37 of which had Ka/Ks values lager than 1, suggesting that most TaVQ genes have suffer positive selection. Chromosome location, gene structure, promoter element and gene ontology annotation showed that the structure of the genes determined their function and that structural change reflected functional diversity. The transcriptome expression analysis of 62 TaVQ genes and microarray analysis of 11 TaVQ genes indicated that they played important roles in diverse biological processes. We compared TaVQ gene expression and corresponding seed germination index values among wheat varieties with contrasting seed dormancy and germination phenotypes and found that 21 TaVQ genes may be related to seed dormancy and germination. Conclusions: Sixty-five TaVQ proteins were identified for the first time in common wheat, and bioinformatics analysis was performed to investigate their phylogenetic relationships and evolutionary divergence. The qRT-PCR data showed that 21 TaVQ candidate genes were potentially involved in seed dormancy and germination. These findings provide effective information for further cloning and functional analysis of TaVQ genes, as well as useful candidate genes for improvement of PHS resistance in wheat.


Sign in / Sign up

Export Citation Format

Share Document