drop size distributions
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 42)

H-INDEX

46
(FIVE YEARS 4)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
Miguel Panão

In particle engineering, spray drying is an essential technique that depends on producing sprays, ideally made of equal-sized droplets. Ultrasonic sprays appear to be the best option to achieve it, and Faraday waves are the background mechanism of ultrasonic atomization. The characterization of sprays in this atomization strategy is commonly related to the relation between characteristic drop sizes and the capillary length produced by the forcing frequency of wavy patterns on thin liquid films. However, although this atomization approach is practical when the intended outcome is to produce sprays with droplets of the same size, drop sizes are diverse in real applications. Therefore, adequate characterization of drop size is paramount to establishing the relations between empirical approaches proposed in the literature and the outcome of ultrasonic atomization in actual operating conditions. In this sense, this work explores new approaches to spray characterization applied to ultrasonic sprays produced with different solvents. The first two introduced are the role of redundancy in drop size measurements to avoid resolution limitation in the measurement technique and compare using regular versus variable bin widths when building the histograms of drop size. Another spray characterization tool is the Drop Size Diversity to understand the limitations of characterizing ultrasonic sprays solely based on representative diameters or moments of drop size distributions. The results of ultrasonic spray characterization obtained emphasize: the lack of universality in the relation between a characteristic diameter and the capillary length associated with Faraday waves; the variability on drop size induced by both liquid properties and flow rate on the atomization outcome, namely, lower capillary lengths produce smaller droplets but less efficiently; the higher sensibility of the polydispersion and heterogeneity degrees in Drop Size Diversity when using variable bin widths to build the histograms of drop size; the higher drop size diversity for lower flow rates expressed by the presence of multiple clusters of droplets with similar characteristics leading to multimodal drop size distributions; and the gamma and log-normal mathematical probability functions are the ones that best describe the organization of drop size data in ultrasonic sprays.


Abstract Using NOAA’s S-band High Power Snow-Level Radar, HPSLR, a technique for estimating the rain drop size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parameter, generalized Gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value (assumed, measured, or estimated) of the vertical air motion, w, an estimate of the GGD is obtained. Four different methods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter, Dm, from the measured reflectivity, Z, produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique was applied to 19 h of observations from Hankins, NC. Results support the concept that DSDs can be modeled using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating DSDs in more varied precipitation types and to verify the vertical air motion estimates.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2576
Author(s):  
Luis Felipe Gualco ◽  
Lenin Campozano ◽  
Luis Maisincho ◽  
Leandro Robaina ◽  
Luis Muñoz ◽  
...  

Monitoring precipitation in mountainous areas using traditional tipping-bucket rain gauges (TPB) has become challenging in sites with strong variations of air temperature and wind speed (Ws). The drop size distributions (DSD), amount, and precipitation-type of a Parsivel OTT2 disdrometer installed at 4730 m above sea level (close to the 0 °C isotherm) in the glacier foreland of the Antisana volcano in Ecuador are used to analyze the precipitation type. To correct the DSDs, we removed spurious particles and shifted fall velocities such that the mean value matches with the fall velocity–diameter relationship of rain, snow, graupel, and hail. Solid (SP) and liquid precipitation (LP) were identified through −1 and 3 °C thresholds and then grouped into low, medium, and high Ws categories by k-means approach. Changes in DSDs were tracked using concentration spectra and particle’s contribution by diameter and fall velocity. Thus, variations of concentration/dispersion and removed hydrometeors were linked with Ws changes. Corrected precipitation, assuming constant density (1 g cm−3), gives reliable results for LP with respect to measurements at TPB and overestimates SP measured in disdrometer. Therefore, corrected precipitation varying density models achieved fewer differences. These results are the first insight toward the understating of precipitation microphysics in a high-altitude site of the tropical Andes.


Author(s):  
Ju-Yu Chen ◽  
Silke Trömel ◽  
Alexander Ryzhkov ◽  
Clemens Simmer

AbstractRecent advances demonstrate the benefits of radar-derived specific attenuation at horizontal polarization (AH) for quantitative precipitation estimation (QPE) at S and X band. To date the methodology has, however, not been adapted for the widespread European C-band radars such as installed in the network of the German Meteorological Service (DWD, Deutscher Wetterdienst). Simulations based on a large dataset of drop size distributions (DSDs) measured over Germany are performed to investigate the DSD dependencies of the attenuation parameter αH for the AH estimates. The normalized raindrop concentration (Nw) and the change of differential reflectivity (ZDR) with reflectivity at horizontal polarization (ZH) are used to categorize radar observations into regimes for which scan-wise optimized αH values are derived. For heavier continental rain with ZH > 40 dBZ, the AH-based rainfall retrieval R(AH) is combined with a rainfall estimator using a substitute of specific differential phase (). We also assess the performance of retrievals based on specific attenuation at vertical polarization (AV). Finally, the regime-adapted hybrid QPE algorithms are applied to four convective cases and one stratiform case from 2017 to 2019, and compared to DWD’s operational RAdar-OnLine-ANeichung (RADOLAN) RW rainfall product, which is based on Zh only but adjusted to rain gauge measurements. For the convective cases, our hybrid retrievals outperform the traditional R(Zh) and pure R(AH/V) retrievals with fixed αH/V values when evaluated with gauge measurements and outperform RW when evaluated by disdrometer measurements. Potential improvements using ray-wise αH/V and segment-wise applications of the ZPHI method along the radials are discussed.


2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Merhala Thurai ◽  
David Wolff ◽  
David Marks ◽  
Charanjit Pabla ◽  
Viswanathan Bringi

Data from an S-band polarimetric radar located at a mid-latitude, coastal location are used to compare two different methods for identifying stratiform and convective rain regions. The first method entails the retrievals of two (main) parameters of the rain drop size distributions using the radar reflectivity and the differential reflectivity. The second technique is a well-known texture-based method which utilizes the radar reflectivity and its spatial variability. A widespread event with embedded line convection was used as a test case. The two methods were compared using 500 m by 500 m pixel resolution gridded data constructed from the radar volume scans. Only 12% of the pixels showed disagreement between the two methods.


Author(s):  
Kristofer S. Tuftedal ◽  
Michael M. French ◽  
Darrel M. Kingfield ◽  
Jeffrey C. Snyder

AbstractThe time preceding supercell tornadogenesis and tornadogenesis “failure” has been studied extensively to identify differing attributes related to tornado production or lack thereof. Studies from the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) found that air in the rear-flank downdraft (RFD) regions of non- and weakly tornadic supercells had different near-surface thermodynamic characteristics than that in strongly tornadic supercells. Subsequently, it was proposed that microphysical processes are likely to have an impact on the resulting thermodynamics of the near-surface RFD region. One way to view proxies to microphysical features, namely drop size distributions (DSDs), is through use of polarimetric radar data. Studies from the second VORTEX used data from dual-polarization radars to provide evidence of different DSDs in the hook echoes of tornadic and non-tornadic supercells. However, radar-based studies during these projects were limited to a small number of cases preventing result generalizations. This study compiles 68 tornadic and 62 non-tornadic supercells using Weather Surveillance Radar–1988 Doppler (WSR-88D) data to analyze changes in polarimetric radar variables leading up to, and at, tornadogenesis and tornadogenesis failure. Case types generally did not show notable hook echo differences in variables between sets, but did show spatial hook echo quadrant DSD differences. Consistent with past studies, differential radar reflectivity factor (ZDR) generally decreased leading up to tornadogenesis and tornadogenesis failure; in both sets, estimated total number concentration increased during the same times. Relationships between DSDs and the near-storm environment, and implications of results for nowcasting tornadogenesis, also are discussed.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 699
Author(s):  
Arthur R. Jameson ◽  
Michael L. Larsen ◽  
David B. Wolff

It is important to understand the statistical–physical structure of the rain in the vertical so that observations aloft can be translated meaningfully into what will occur at the surface. In order to achieve this understanding, it is necessary to gather high temporal and spatial resolution observations of rain in the vertical. This can be achieved by translating radar Doppler spectra into drop size distributions. A long-standing difficulty in using such measurements, however, is the problem of vertical air motion, which can shift the Doppler spectra and therefore significantly alter the deduced drop size distributions and integrated variables. In this work, we overcome this difficulty by requiring that the measured radar reflectivity and the calculated rainfall rates satisfy fundamental physical theory. As a consequence, the mean vertical airspeed can be estimated and removed. Application of this new approach is demonstrated using vertically pointing Doppler radar observations in weak convection. It is shown that the new approach produces what appear to be better estimates of the rainfall rates as well as estimates of the temporal and spatial regionally coherent updraft and downdrafts occurring in the precipitation. The technique is readily applicable to other radars, especially those operating at non-attenuating frequencies.


Sign in / Sign up

Export Citation Format

Share Document