jet interactions
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 2)

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 93
Author(s):  
Eleni Vardoulaki ◽  
Franco Vazza ◽  
Eric F. Jiménez-Andrade ◽  
Ghassem Gozaliasl ◽  
Alexis Finoguenov ◽  
...  

A fascinating topic in radio astronomy is how to associate the complexity of observed radio structures with their environment in order to understand their interplay and the reason for the plethora of radio structures found in surveys. In this project, we explore the distortion of the radio structure of Fanaroff–Riley (FR)-type radio sources in the VLA-COSMOS Large Project at 3 GHz and relate it to their large-scale environment. We quantify the distortion by using the angle formed between the jets/lobes of two-sided FRs, namely bent angle (BA). Our sample includes 108 objects in the redshift range 0.08<z<3, which we cross-correlate to a wide range of large-scale environments (X-ray galaxy groups, density fields, and cosmic web probes) in the COSMOS field. The median BA of FRs in COSMOS at zmed∼0.9 is 167.5−37.5+11.5 degrees. We do not find significant correlations between BA and large-scale environments within COSMOS covering scales from a few kpc to several hundred Mpc, nor between BA and host properties. Finally, we compare our observational data to magnetohydrodynamical (MHD) adaptive-mesh simulations ENZO-MHD of two FR sources at z = 0.5 and at z = 1. Although the scatter in BA of the observed data is large, we see an agreement between observations and simulations in the bent angles of FRs, following a mild redshift evolution with BA. We conclude that, for a given object, the dominant mechanism affecting the radio structures of FRs could be the evolution of the ambient medium, where higher densities of the intergalactic medium at lower redshifts as probed by our study allow more space for jet interactions.


Author(s):  
Tianyu Wang ◽  
Yan Du ◽  
Minyang Wang

AbstractAn Argo simulation system is used to provide synthetic Lagrangian trajectories based on the Estimating the Circulation and Climate of the Ocean model, Phase II (ECCO2). In combination with ambient Eulerian velocity at the reference layer (1000 m) from the model, quantitative metrics of the Lagrangian trajectory-derived velocities are computed. The result indicates that the biases induced by the derivation algorithm are strongly linked with ocean dynamics. In low latitudes, Ekman currents and vertically sheared geostrophic currents influence both the magnitude and the direction of the derivation velocity vectors. The maximal shear-induced biases exist near the equator with the amplitudes reaching up to about 1.2 cm s-1. The angles of the shear biases are pronounced in the low latitude oceans, ranging from -8° to 8°. Specifically, the study shows an overlooked bias from the float drifting motions that mainly occurs in the western boundary current and Antarctic circumpolar current (ACC) regions. In these regions, a recently reported horizontal acceleration measured via Lagrangian floats is significantly associated with the strong eddy-jet interactions. The acceleration could induce an overestimation of Eulerian current velocity magnitudes. For the common Argo floats with a 9-day float parking period, the derivation speed biases induced by velocity acceleration would be as large as 3 cm s-1, approximately 12% of the ambient velocity. It might have implications to map the mean mid-depth ocean currents from Argo trajectories, as well as understand the dynamics of eddy-jet interactions in the ocean.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 314
Author(s):  
Colby Niles Horner ◽  
Adrian Sescu ◽  
Mohammed Afsar ◽  
Eric Collins

Multiple competing factors are forcing aircraft designers to reconsider the underwing engine pod configuration typically seen on most modern commercial aircraft. One notable concern is increasing environmental regulations on noise emitted by aircraft. In an attempt to satisfy these constraints while maintaining or improving vehicle performance, engineers have been experimenting with some innovative aircraft designs which place the engines above the wings or embedded in the fuselage. In one configuration, a blended wing concept vehicle utilizes rectangular jet exhaust ports exiting from above the wing ahead of the trailing edge. While intuitively one would think that this design would reduce the noise levels transmitted to the ground due to the shielding provided by the wing, experimental studies have shown that this design can actually increase noise levels due to interactions of the jet exhaust with the aft wing surface and flat trailing edge. In this work, we take another look at this rectangular exhaust port configuration with some notional modifications to the geometry of the trailing edge to determine if the emitted noise levels due to jet interactions can be reduced with respect to a baseline configuration. We consider various horizontal and vertical offsets of the jet exit with respect to a flat plate standing in for the aft wing surface. We then introduce a series of sinusoidal deformations to the trailing edge of the plate of varying amplitude and wave number. Our results show that the emitted sound levels due to the jet–surface interactions can be significantly altered by the proposed geometry modifications. While sound levels remained fairly consistent over many configurations, there were some that showed both increased and decreased sound levels in specific directions. We present results here for the simulated configurations which showed the greatest decrease in overall sound levels with respect to the baseline. These results provide strong indications that such geometry modifications can potentially be tailored to optimize for further reductions in sound levels.


Author(s):  
Angelo Odetti ◽  
Marco Altosole ◽  
Marco Bibuli ◽  
Gabriele Bruzzone ◽  
Massimo Caccia ◽  
...  

This paper is related to the technological development of an innovative small-size Autonomous Surface Vehicle designed to meet the requirement of accessing, monitoring and protecting the shallow waters peculiar of the Wetlands. The first prototype of a fully electric, modular, portable, lightweight, and highly-controllable Autonomous Surface Vehicle (ASV) for extremely shallow water and remote areas, namely SWAMP, was developed by CNR-INM and DITEN-Unige. This catamaran is equipped with four azimuth Pump-Jet Modular (PJM) actuators designed for small-size (1 to 1.5 m long) ASV. The main advantage of Pump-Jet thrusters is that they are flush with the hull, thus minimizing the risks of damages due to possible grounding. This system is used to increase the manoeuvrability in narrow spaces and to increase the spacial resolution by allowing the access also in extremely shallow waters with smaller risk of loosing manoeuvrability. The knowledge of the hydrodynamic characteristics of the thruster and of the vessel allows to partly or fully identifying the vessel for a better controllability. With this aim a series of tests have been conducted in the DITEN towing tank. In particular advance resistance on the SWAMP hull in deep and shallow water, bollard pull and self-propelling tests with the Pump-Jet Module working have been carried out. The results of the tests with the effects of advance speed on the PJM performance is reported in this paper together with the description of the modelling of the thruster itself.


2020 ◽  
Vol 494 (4) ◽  
pp. 5207-5229 ◽  
Author(s):  
G Musoke ◽  
A J Young ◽  
S M Molnar ◽  
M Birkinshaw

ABSTRACT The radio galaxy 3C 75 is remarkable because it contains a pair of radio-loud active galaxies, each of which produces a two-sided jet, with the jet beams appearing to collide and merge to the west of the galaxies. Motivated by 3C 75, we have conducted three-dimensional hydrodynamic simulations of jet collisions. We have extended previous studies by modelling the physical properties of the cluster atmosphere, including an external wind, and using realistic jet powers obtained from observational data. We are able to produce a morphology similar to that of 3C 75. The simulations imply that direct contact between the bulk jet flows on the west of the source is required to produce a morphology consistent with 3C 75. We quantify how the merging jets decelerate, how the wind deflects the jets and cocoons, the entrainment of intra-cluster material into the cocoons, the cocoon energetics, and how the jet interactions generate enstrophy. By comparing simulations of pairs of two-sided jets with those of single two-sided sources, we determine how the interaction between two bipolar jets changes their evolution. The unprecedented sensitivity and angular resolution of upcoming observatories will lead to the detection of many more complex sources at high redshift, where interacting jets are expected to be more numerous. The morphology of these complex sources can provide significant insight into the conditions in their environments.


2019 ◽  
Vol 17 (3) ◽  
pp. 1900179 ◽  
Author(s):  
Soheila Mohades ◽  
Amanda M. Lietz ◽  
Juliusz Kruszelnicki ◽  
Mark J. Kushner

Sign in / Sign up

Export Citation Format

Share Document