system of polynomial equations
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 0)

2022 ◽  
Vol 69 (1) ◽  
pp. 1-70
Author(s):  
Mikkel Abrahamsen ◽  
Anna Adamaszek ◽  
Tillmann Miltzow

The Art Gallery Problem (AGP) is a classic problem in computational geometry, introduced in 1973 by Victor Klee. Given a simple polygon 풫 and an integer k , the goal is to decide if there exists a set G of k guards within 풫 such that every point p ∈ 풫 is seen by at least one guard g ∈ G . Each guard corresponds to a point in the polygon 풫, and we say that a guard g sees a point p if the line segment pg is contained in 풫. We prove that the AGP is ∃ ℝ-complete, implying that (1) any system of polynomial equations over the real numbers can be encoded as an instance of the AGP, and (2) the AGP is not in the complexity class NP unless NP = ∃ ℝ. As a corollary of our construction, we prove that for any real algebraic number α, there is an instance of the AGP where one of the coordinates of the guards equals α in any guard set of minimum cardinality. That rules out many natural geometric approaches to the problem, as it shows that any approach based on constructing a finite set of candidate points for placing guards has to include points with coordinates being roots of polynomials with arbitrary degree. As an illustration of our techniques, we show that for every compact semi-algebraic set S ⊆ [0, 1] 2 , there exists a polygon with corners at rational coordinates such that for every p ∈ [0, 1] 2 , there is a set of guards of minimum cardinality containing p if and only if p ∈ S . In the ∃ ℝ-hardness proof for the AGP, we introduce a new ∃ ℝ-complete problem ETR-INV. We believe that this problem is of independent interest, as it has already been used to obtain ∃ ℝ-hardness proofs for other problems.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
A. Esterov ◽  
L. Lang

AbstractWe introduce a new technique to prove connectivity of subsets of covering spaces (so called inductive connectivity), and apply it to Galois theory of problems of enumerative geometry. As a model example, consider the problem of permuting the roots of a complex polynomial $$f(x) = c_0 + c_1 x^{d_1} + \cdots + c_k x^{d_k}$$ f ( x ) = c 0 + c 1 x d 1 + ⋯ + c k x d k by varying its coefficients. If the GCD of the exponents is d, then the polynomial admits the change of variable $$y=x^d$$ y = x d , and its roots split into necklaces of length d. At best we can expect to permute these necklaces, i.e. the Galois group of f equals the wreath product of the symmetric group over $$d_k/d$$ d k / d elements and $${\mathbb {Z}}/d{\mathbb {Z}}$$ Z / d Z . We study the multidimensional generalization of this equality: the Galois group of a general system of polynomial equations equals the expected wreath product for a large class of systems, but in general this expected equality fails, making the problem of describing such Galois groups unexpectedly rich.


Author(s):  
Sergei Kalmykov ◽  
Béla Nagy

AbstractThe famous Jones–Ruscheweyh theorem states that n distinct points on the unit circle can be mapped to n arbitrary points on the unit circle by a Blaschke product of degree at most $$n-1$$ n - 1 . In this paper, we provide a new proof using real algebraic techniques. First, the interpolation conditions are rewritten into complex equations. These complex equations are transformed into a system of polynomial equations with real coefficients. This step leads to a “geometric representation” of Blaschke products. Then another set of transformations is applied to reveal some structure of the equations. Finally, the following two fundamental tools are used: a Positivstellensatz by Prestel and Delzell describing positive polynomials on compact semialgebraic sets using Archimedean module of length N. The other tool is a representation of positive polynomials in a specific form due to Berr and Wörmann. This, combined with a careful calculation of leading terms of occurring polynomials finishes the proof.


2021 ◽  
Vol 28 (3) ◽  
pp. 238-249
Author(s):  
Sergei Nikolaevich Chukanov ◽  
Ilya Stanislavovich Chukanov

The paper considers methods for estimating stability using Lyapunov functions, which are used for nonlinear polynomial control systems. The apparatus of the Gro¨bner basis method is used to assess the stability of a dynamical system. A description of the Gro¨bner basis method is given. To apply the method, the canonical relations of the nonlinear system are approximated by polynomials of the components of the state and control vectors. To calculate the Gro¨bner basis, the Buchberger algorithm is used, which is implemented in symbolic computation programs for solving systems of nonlinear polynomial equations. The use of the Gro¨bner basis for finding solutions of a nonlinear system of polynomial equations is considered, similar to the application of the Gauss method for solving a system of linear equations. The equilibrium states of a nonlinear polynomial system are determined as solutions of a nonlinear system of polynomial equations. An example of determining the equilibrium states of a nonlinear polynomial system using the Gro¨bner basis method is given. An example of finding the critical points of a nonlinear polynomial system using the Gro¨bner basis method and the Wolfram Mathematica application software is given. The Wolfram Mathematica program uses the function of determining the reduced Gro¨bner basis. The application of the Gro¨bner basis method for estimating the attraction domain of a nonlinear dynamic system with respect to the equilibrium point is considered. To determine the scalar potential, the vector field of the dynamic system is decomposed into gradient and vortex components. For the gradient component, the scalar potential and the Lyapunov function in polynomial form are determined by applying the homotopy operator. The use of Gro¨bner bases in the gradient method for finding the Lyapunov function of a nonlinear dynamical system is considered. The coordination of input-output signals of the system based on the construction of Gro¨bner bases is considered.


Author(s):  
I. Nikitin

Given a bivariate system of polynomial equations with fixed support sets [Formula: see text] it is natural to ask which multiplicities its solutions can have. We prove that there exists a system with a solution of multiplicity [Formula: see text] for all [Formula: see text] in the range [Formula: see text], where [Formula: see text] is the set of all integral vectors that shift B to a subset of [Formula: see text]. As an application, we classify all pairs [Formula: see text] such that the system supported at [Formula: see text] does not have a solution of multiplicity higher than [Formula: see text].


Author(s):  
Amir Akbary ◽  
Peng-Jie Wong

Let [Formula: see text] be the group of [Formula: see text]-torsion points of a commutative algebraic group [Formula: see text] defined over a number field [Formula: see text]. For a prime [Formula: see text] of [Formula: see text], we let [Formula: see text] be the number of [Formula: see text]-solutions of the system of polynomial equations defining [Formula: see text] when reduced modulo [Formula: see text]. Here, [Formula: see text] is the residue field at [Formula: see text]. Let [Formula: see text] denote the number of primes [Formula: see text] of [Formula: see text] such that [Formula: see text]. We then, for algebraic groups of dimension one, compute the [Formula: see text]th moment limit [Formula: see text] by appealing to the Chebotarev density theorem. We further interpret this limit as the number of orbits of the action of the absolute Galois group of [Formula: see text] on [Formula: see text] copies of [Formula: see text] by an application of Burnside’s Lemma. These concrete examples suggest a possible approach for determining the number of orbits of a group acting on [Formula: see text] copies of a set.


2020 ◽  
Vol 8 ◽  
pp. 106-110
Author(s):  
Nacer Ghadbane

The basic idea behind multivariate cryptography is to choose a system of polynomials which can be easily inverted (central map). After that one chooses two affine invertible maps to hide the structure of the central map. Fellows and Koblitz outlined a conceptual key cryptosystem based on the hardness of POSSO. Let Fp s be a finite field of p s elements, where p is a prime number, and s ∈ N, s ≥ 1. In this paper, we used the act of GLn (Fp s ) on the set F n p s and the transformations group, to present the public key cryptosystems based on the problem of solving a non-linear system of polynomial equations


2020 ◽  
Vol Volume 12, issue 1 ◽  
Author(s):  
Julian Danner ◽  
Martin Kreuzer

A fault injection framework for the decryption algorithm of the Niederreiter public-key cryptosystem using binary irreducible Goppa codes and classical decoding techniques is described. In particular, we obtain low-degree polynomial equations in parts of the secret key. For the resulting system of polynomial equations, we present an efficient solving strategy and show how to extend certain solutions to alternative secret keys. We also provide estimates for the expected number of required fault injections, apply the framework to state-of-the-art security levels, and propose countermeasures against this type of fault attack. Comment: 20 pages


Robotica ◽  
2019 ◽  
Vol 38 (11) ◽  
pp. 1963-1983
Author(s):  
Arash Rahmani ◽  
Shirko Faroughi

SUMMARYThis paper addresses the application of a novel elimination algorithm with a newly developed homotopy continuation method (HCM) for forward kinematics of a specific hybrid modular manipulator known as n-(6UPS). First, the kinematic model of n-(6UPS) was extracted using a homogenous transformation matrix method. Then, a novel algebraic elimination algorithm was developed to transform the highly nonlinear proposed kinematic model into a system of polynomial equations for each module. Next, the HCM is considered to solve the system of equations. Comparison of the results from the proposed approach with experimental data and other methods demonstrates the efficiency of the proposed contribution.


Author(s):  
Paul Görlach ◽  
Yue Ren ◽  
Jeff Sommars

Abstract We introduce the notion of tropical defects, certificates that a system of polynomial equations is not a tropical basis, and provide two algorithms for finding them in affine spaces of complementary dimension to the zero set. We use these techniques to solve open problems regarding del Pezzo surfaces of degree 3 and realizability of valuated gaussoids on 4 elements.


Sign in / Sign up

Export Citation Format

Share Document