complex polymers
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 29)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaochao Xia ◽  
Ryota Suzuki ◽  
Tianle Gao ◽  
Takuya Isono ◽  
Toshifumi Satoh

AbstractSwitchable polymerization holds considerable potential for the synthesis of highly sequence-controlled multiblock. To date, this method has been limited to three-component systems, which enables the straightforward synthesis of multiblock polymers with less than five blocks. Herein, we report a self-switchable polymerization enabled by simple alkali metal carboxylate catalysts that directly polymerize six-component mixtures into multiblock polymers consisting of up to 11 blocks. Without an external trigger, the catalyst polymerization spontaneously connects five catalytic cycles in an orderly manner, involving four anhydride/epoxide ring-opening copolymerizations and one L-lactide ring-opening polymerization, creating a one-step synthetic pathway. Following this autotandem catalysis, reasonable combinations of different catalytic cycles allow the direct preparation of diverse, sequence-controlled, multiblock copolymers even containing various hyperbranched architectures. This method shows considerable promise in the synthesis of sequentially and architecturally complex polymers, with high monomer sequence control that provides the potential for designing materials.


2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Xinhua Qi ◽  
Wenlong Yan ◽  
Zhibei Cao ◽  
Mingzhu Ding ◽  
Yingjin Yuan

Polyethylene terephthalate (PET) is a widely used plastic that is polymerized by terephthalic acid (TPA) and ethylene glycol (EG). In recent years, PET biodegradation and bioconversion have become important in solving environmental plastic pollution. More and more PET hydrolases have been discovered and modified, which mainly act on and degrade the ester bond of PET. The monomers, TPA and EG, can be further utilized by microorganisms, entering the tricarboxylic acid cycle (TCA cycle) or being converted into high value chemicals, and finally realizing the biodegradation and bioconversion of PET. Based on synthetic biology and metabolic engineering strategies, this review summarizes the current advances in the modified PET hydrolases, engineered microbial chassis in degrading PET, bioconversion pathways of PET monomers, and artificial microbial consortia in PET biodegradation and bioconversion. Artificial microbial consortium provides novel ideas for the biodegradation and bioconversion of PET or other complex polymers. It is helpful to realize the one-step bioconversion of PET into high value chemicals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinhua Qi ◽  
Yuan Ma ◽  
Hanchen Chang ◽  
Bingzhi Li ◽  
Mingzhu Ding ◽  
...  

Polyethylene terephthalate (PET) biodegradation is regarded as an environmentally friendly degradation method. In this study, an artificial microbial consortium composed of Rhodococcus jostii, Pseudomonas putida and two metabolically engineered Bacillus subtilis was constructed to degrade PET. First, a two-species microbial consortium was constructed with two engineered B. subtilis that could secrete PET hydrolase (PETase) and monohydroxyethyl terephthalate hydrolase (MHETase), respectively; it could degrade 13.6% (weight loss) of the PET film within 7 days. A three-species microbial consortium was further obtained by adding R. jostii to reduce the inhibition caused by terephthalic acid (TPA), a breakdown product of PET. The weight of PET film was reduced by 31.2% within 3 days, achieving about 17.6% improvement compared with the two-species microbial consortium. Finally, P. putida was introduced to reduce the inhibition caused by ethylene glycol (EG), another breakdown product of PET, obtaining a four-species microbial consortium. With the four-species consortium, the weight loss of PET film reached 23.2% under ambient temperature. This study constructed and evaluated the artificial microbial consortia in PET degradation, which demonstrated the great potential of artificial microbial consortia in the utilization of complex substrates, providing new insights for biodegradation of complex polymers.


2021 ◽  
Vol 11 (5) ◽  
pp. 548-556
Author(s):  
Shubhada Nayak ◽  
Madhuri Sahasrabuddhe ◽  
Sharad Kale

Anaerobic digestion is among the essential biological techniques used for stabilization of organic sludge from sewage and highly concentrated efflu-ents from food processing industries. It also recycles the municipal solid wastes into compost with simultaneous production of methane. The current study was performed to estimate the biomethanation potential of various agro- and industrial wastes like Jatropha de-oil cake, prawn shells, chicken feathers, bagasse, rice straw and wheat husk by mimicking the conditions in the biphasic Nisargruna biogas plant. A small volume of samples was chemi-cally characterized and allowed to decompose under aerobic and anaerobic conditions to determine the effect of aerobic predigestion (i.e. phase 1 of Nisargruna plant) on final methane production. The biogas produced was quantified by downward displacement of water. The observations indicated that approximately 60-80% methane was produced when Jatropha de-oil cake, prawn shells and rice straw was used. Conversely, the wheat straw and sugarcane wastes showed less methane formation, which may be due to the presence of complex polymers like lignocellulose and silica that considerably reduces the metabolic potential of microorganisms.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiazhong Chen ◽  
Edward S. Wilks ◽  
Alain Fradet ◽  
Karl-Heinz Hellwich ◽  
Roger C. Hiorns ◽  
...  

Abstract The existing recommendations for the structure-based nomenclature of regular single-strand organic polymers are extrapolated to complex polymers. The key proposal is that polymeric moieties may be named substituents. The types of polymers covered include linear and branched polymers containing more than one block of a single type of constitutional repeating unit (CRU) and branched polymers containing a main chain from which one or more polymeric side chains emanate.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jonas L. Ravn ◽  
Martin K. M. Engqvist ◽  
Johan Larsbrink ◽  
Cecilia Geijer

Abstract Background Ascomycetous yeasts from the kingdom fungi inhabit every biome in nature. While filamentous fungi have been studied extensively regarding their enzymatic degradation of the complex polymers comprising lignocellulose, yeasts have been largely overlooked. As yeasts are key organisms used in industry, understanding their enzymatic strategies for biomass conversion is an important factor in developing new and more efficient cell factories. The aim of this study was to identify polysaccharide-degrading yeasts by mining CAZymes in 332 yeast genomes from the phylum Ascomycota. Selected CAZyme-rich yeasts were then characterized in more detail through growth and enzymatic activity assays. Results The CAZyme analysis revealed a large spread in the number of CAZyme-encoding genes in the ascomycetous yeast genomes. We identified a total of 217 predicted CAZyme families, including several CAZymes likely involved in degradation of plant polysaccharides. Growth characterization of 40 CAZyme-rich yeasts revealed no cellulolytic yeasts, but several species from the Trichomonascaceae and CUG-Ser1 clades were able to grow on xylan, mixed-linkage β-glucan and xyloglucan. Blastobotrys mokoenaii, Sugiyamaella lignohabitans, Spencermartinsiella europaea and several Scheffersomyces species displayed superior growth on xylan and well as high enzymatic activities. These species possess genes for several putative xylanolytic enzymes, including ones from the well-studied xylanase-containing glycoside hydrolase families GH10 and GH30, which appear to be attached to the cell surface. B. mokoenaii was the only species containing a GH11 xylanase, which was shown to be secreted. Surprisingly, no known xylanases were predicted in the xylanolytic species Wickerhamomyces canadensis, suggesting that this yeast possesses novel xylanases. In addition, by examining non-sequenced yeasts closely related to the xylanolytic yeasts, we were able to identify novel species with high xylanolytic capacities. Conclusions Our approach of combining high-throughput bioinformatic CAZyme-prediction with growth and enzyme characterization proved to be a powerful pipeline for discovery of novel xylan-degrading yeasts and enzymes. The identified yeasts display diverse profiles in terms of growth, enzymatic activities and xylan substrate preferences, pointing towards different strategies for degradation and utilization of xylan. Together, the results provide novel insights into how yeast degrade xylan, which can be used to improve cell factory design and industrial bioconversion processes.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1961
Author(s):  
R. Teruel-Juanes ◽  
B. Pascual-Jose ◽  
R. Graf ◽  
J. A. Reina ◽  
M. Giamberini ◽  
...  

The macromolecular dynamics of dendronized copolymer membranes (PECHs), obtained by chemical modification of poly(epichlorohydrin) with the dendron 3,4,5-tris[4-(n-dodecan-1-yloxy)benzyloxy] benzoate, was investigated. In response to a thermal treatment during membrane preparation, these copolymers show an ability to change their shape, achieve orientation, and slightly crystallize, which was also observed by CP-MAS NMR, XRD, and DSC. The phenomenon was deeply analyzed by dielectric thermal analysis. The dielectric spectra show the influence of several factors such as the number of dendritic side groups, the orientation, their self-assembling dendrons, and the molecular mobility. The dielectric spectra present a sub-Tg dielectric relaxation, labelled as γ, associated with the mobility of the benzyloxy substituent of the dendritic group. This mobility is not related to the percentage of these lateral chains but is somewhat hindered by the orientation of the dendritic groups. Unlike other less complex polymers, the crystallization was dismantled before the appearance of the glass transition (αTg). Only after that, clearing transition (αClear) can be observed. The PECHs were flexible and offered a high free volume, despite presenting a high degree of modifications. However, the molecular mobility is not independent in each phase and the self-assembling dendrons can be eventually fine-tuned according to the percentage of grafted groups.


Author(s):  
Obey Gotore ◽  
Vadzanayi Mushayi ◽  
Sawitree Tipnee

The fossil fuel-based linear economy has many severe drawbacks, including the need for energy security and the resulting environmental degradation. In a new cycle of the bio-economy that is becoming increasingly important, biomass waste has been used to generate energy while reducing pollution and greenhouse gas emissions. The growth of renewable energy will be substantial in the reduction of greenhouse gas emissions in order to achieve the ambitious goal of becoming carbon neutral by the mid-century. It appears that using anaerobic digestion technology to produce methane-rich biogas from biomass has a great deal of potential in this scenario. The cattail fresh and dry biomass substrate with pig wastes as inoculum was tested for biogas production. Cattail's highly complex lignocellulosic structures make it challenging to decompose as a biogas substrate. Alkaline pretreatment is one of the efficient tools in solubilizing lignin. As a result, chemical pretreatment of biomass (2 % sodium hydroxide) was a unique method for increasing biogas generation by reducing complex polymers of lignocellulosic materials into simpler molecules that microorganisms could digest. The fresh and dry biomass substrate added fermenter was produced with 57% and 60% methane, respectively.


2021 ◽  
Author(s):  
Jonas L. Ravn ◽  
Martin K. M. Engqvist ◽  
Johan Larsbrink ◽  
Cecilia Geijer

Abstract Background Ascomycetous yeasts from the kingdom fungi inhabit every biome in Nature. While filamentous fungi have been studied extensively regarding their enzymatic degradation of the complex polymers comprising lignocellulose, yeasts have been largely overlooked. As yeasts are key organisms used in industry, understanding their enzymatic strategies for biomass conversion is an important factor in developing new and more efficient cell factories. The aim of this study was to identify polysaccharide-degrading yeasts by mining CAZymes in 332 yeast genomes from the phylum Ascomycota. Selected CAZyme-rich yeasts were then characterized in more detail through growth and enzymatic activity assays. Results The CAZyme analysis revealed a large spread in the number of CAZyme-encoding genes in the Ascomycetous yeast genomes. We identified a total of 224 predicted CAZyme families, including several CAZymes likely involved in degradation of plant polysaccharides. Growth characterization of 40 CAZyme-rich yeasts revealed no cellulolytic yeasts, but several species from the Trichomonascaceae and CUG-Ser1 clades were able to grow on xylan, β-glucan and xyloglucan. Blastobotrys mokoenaii, Sugiyamaella lignohabitans, Spencermartinsiella europaea and several Scheffersomyces species displayed superior growth on xylan and well as high enzymatic activities. These species contained several putative xylanolytic enzymes, including the well-studied xylanase-containing glycoside hydrolase families GH10 and GH30 that appear attached to the cell surface. B. mokoenaii was the only species containing a GH11 xylanase, which was shown to be secreted. Surprisingly, no known xylanases were predicted in the xylanolytic species Wickerhamomyces canadensis, suggesting that this yeast possess novel xylanases. In addition, by examining non-sequenced yeasts closely related to the xylanolytic yeasts, we were able to identify novel species with high xylanolytic capacities. Conclusions Our approach of combining high-throughput bioinformatic CAZyme-prediction with growth and enzyme characterization proved to be a powerful pipeline for discovery of novel xylan-degrading yeasts and enzymes. The identified yeasts display diverse profiles in terms of growth, enzymatic activities and xylan substrate preferences, pointing towards different strategies for degradation and utilization of xylan. Together, the results provide novel insights into how yeast degrade xylan, which can be used to improve cell factory design and industrial bioconversion processes.


2021 ◽  
Vol 7 (4) ◽  
pp. 264
Author(s):  
Sichen Liu ◽  
Sirida Youngchim ◽  
Daniel Zamith-Miranda ◽  
Joshua D. Nosanchuk

Melanins are ubiquitous complex polymers that are commonly known in humans to cause pigmentation of our skin. Melanins are also present in bacteria, fungi, and helminths. In this review, we will describe the diverse interactions of fungal melanin with the mammalian immune system. We will particularly focus on Cryptococcus neoformans and also discuss other major melanotic pathogenic fungi. Melanin interacts with the immune system through diverse pathways, reducing the effectiveness of phagocytic cells, binding effector molecules and antifungals, and modifying complement and antibody responses.


Sign in / Sign up

Export Citation Format

Share Document