n loading
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 15 (1) ◽  
pp. 664-671
Author(s):  
Noor Nawafleh ◽  
Shareen Elshiyab ◽  
Andreas Öchsner ◽  
Roy George

Objective: This study evaluated the performance of zirconia and lithium disilicate crowns supported by implants or cemented to epoxy resin dies. Methods: Eigthy zirconia and lithium disilicate crowns each were prepared and assigned in four groups according to the crown material and supporting structure combinations (implant-supported zirconia, die-supported zirconia, implant-supported lithium disilicate, and die-supported lithium disilicate). Ten crowns in each group acted as control while the rest (n=10) underwent thermocycling and fatigue with 100 N loading force for 1.5 million cycles. Specimens were then loaded to fracture in a universal testing machine. Data were analysed using one-way ANOVA and Tukey multiple comparison test with a 95% level of significance. Results: No implants or crown failure occurred during fatigue. The mean fracture load values (control, fatigued) in newton were as follows: (4054, 3344) for implant-supported zirconia, (3783, 3477) for die-supported zirconia, (2506, 2207) for implant-supported lithium disilicate, and (2159, 1806) for die-supported lithium disilicate. Comparing the control with the corresponding fatigued subgroup showed a significantly higher fracture load mean of the control group in all cases. Zirconia showed a significantly higher fracture load mean than lithium disilicate (P=0.001, P<0.001). However, comparing crowns made from the same material according to the supporting structure showed no significant difference (P=0.923, P=0.337). Conclusion: Zirconia and lithium disilicate posterior crowns have adequate fatigue and fracture resistance required for posterior crowns. However, when heavy fatigue forces are expected, zirconia material is preferable over lithium disilicate. Zirconia and lithium disilicate implant-supported crowns cemented to hybrid abutments should have satisfactory clinical performance.


2021 ◽  
Author(s):  
Jing Zhou ◽  
Yong Kong ◽  
Mengmeng Wu ◽  
Fengyue Shu ◽  
Haijun Wang ◽  
...  

Abstract Excessive nitrogen (N) input is an important factor influencing aquatic ecosystems and has received increasing public attention in the past decades. It remains unclear, however, how N input affects the denitrifying bacterial communities that play a key role in regulating N cycles in various ecosystems. To test our hypothesis – that the abundance and biodiversity of denitrifying bacterial communities decrease with increasing N – we compared the abundance and composition of denitrifying bacteria having nitrous oxide reductase gene (nosZ I) from sediments (0-20 cm) in five experimental ponds with different nitrogen fertilization treatment (TN10, TN20, TN30, TN40, TN50) using quantitative PCR and pyrosequencing techniques. We found that: 1) N addition significantly decreased nosZ I gene abundance, 2) the Invsimpson and Shannon indices (reflecting biodiversity) first increased significantly along with the increasing N loading in TN10~TN40 followed by a decrease in TN50, 3) the beta diversity of the nosZ I denitrifier was clustered into three groups along the TN concentration levels: Cluster I (TN50), Cluster II (TN40), and Cluster III (TN10-TN30), 4) the proportions of Alphaproteobacteria and Betaproteobacteria in the high-N treatment (TN50) were significantly lower than in the lower N treatments (TN10-TN30). 5). The TN concentration was the most important factor driving the alteration of denitrifying bacteria assemblages. Our findings shed new light on the response of denitrification-related bacteria to long-term N loading at pond scale and on the response of denitrifying microorganisms to N pollution.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hu He ◽  
Kunquan Chen ◽  
Yingxun Du ◽  
Kuanyi Li ◽  
Zhengwen Liu ◽  
...  

The effectiveness of controlling nitrogen (N) to manage eutrophication of aquatic ecosystems remains debated. To understand the mechanisms behind phytoplankton growth in shallow lakes (resource and grazing effects) under contrasting N loading scenarios, we conducted a 70-days mesocosm experiment in summer. The mesocosms contain natural plankton communities deriving from a 10-cm layer of lake sediment and 450 L of lake water. We also added two juvenile crucian carp (Carassius carassius) in each mesocosm to simulate presence of the prevailing omni-benthivorous fish in subtropical lakes. Our results showed that N addition increased not only water N levels but also total phosphorus (TP) concentrations, which together elevated the phytoplankton biomass and caused strong dominance of cyanobacteria. Addition of N significantly lowered the herbivorous zooplankton to phytoplankton biomass ratio and promoted the phytoplankton yield per nutrient (Chl-a: TP or Chl-a: TN ratio), indicating that summer N addition likely also favored phytoplankton growth through reduced grazing by zooplankton. Accordingly, our study indicates that summer N loading may boost eutrophication via both changes in resource and grazing control in shallow lakes. Thus, alleviation of eutrophication in shallow eutrophic lakes requires a strategic approach to control both nutrients (N and P) appropriately.


2021 ◽  
Author(s):  
Yonggui Wang ◽  
Yanqi Guo ◽  
Yanxin Zhao ◽  
Lunche Wang ◽  
Yan Chen ◽  
...  

Abstract Water quality deterioration and eutrophication of urban shallow lakes are global ecological problems with increasing concern and greater environmental efforts. In this study, spatiotemporal changes of water quality and eutrophication over 2015-2019 in Lake Taihu, were assessed using the monthly time series of 7 water quality parameters measured at 17 sites. The whole lake was divided into 7 sub-lakes and trophic condition was evaluated by trophic level index (TLI). Taihu had poor water quality overall which was mainly astricted by the total nitrogen (TN) and the total phosphorus (TP) and maintained a light-eutropher state, but it had improved in the last five years. It is found that all nutrient parameters reached relatively higher concentrations in the northwestern and northern Taihu with combined cluster analysis and spatial interpolation methods. Meiliang Bay was the most polluted and nutrient-rich area. Mann-Kendall test highlighted the fact that the TP and chlorophyll-a (Chl-a) concentrations increased significantly while the TN and five-day biochemical oxygen demand (BOD5) decreased. The nutrient loading input from the northwestern areas with high human activity and the geomorphological characteristic of the northern closed bays were the main contributors to the spatial heterogeneity in water quality. The main driving force of N pollution was the declining river inflow N loading. And P pollution was affected more by accumulated endogenous pollution, decline aquatic plants area, as well as closely linked with algae biomass. Further water pollution and eutrophication mitigation of Taihu should focus on the limitation of algae and those heavily polluted closed bays.


2021 ◽  
Author(s):  
Renske Vroom ◽  
Jeroen Geurts ◽  
Reinder Nouta ◽  
Annieke Borst ◽  
Leon Lamers ◽  
...  

Abstract PurposePaludiculture (crop cultivation in wet peatlands) can prevent carbon and nutrient losses while enabling biomass production. As vegetation in rewetted peatlands is often nitrogen (N) limited, input of N rich water may promote biomass production and nutrient removal. However, it is unclear how N loading and soil characteristics affect biomass yield, nutrient dynamics, and ecosystem service provisioning in paludicultures. MethodsWe studied the influence of N loading (0, 50, 150, and 450 kg N ha-1 yr-1) on biomass production and nutrient sequestration of Typha latifolia (broadleaf cattail) and Phragmites australis (common reed) on a limed agricultural peat soil after rewetting. To assess the interaction with soil characteristics T. latifolia was also grown on a non-limed former agricultural soil.ResultsN loading stimulated biomass production and nutrient uptake of both T. latifolia and P. australis, with T. latifolia showing the most pronounced response. Biomass yield of T. latifolia was higher in the limed soil than in the non-limed soil due to a higher pH, despite lower nutrient availability. N was largely taken up by the vegetation, whereas bare soils showed N accumulation in pore and surface water, and 80% loss through denitrification. Phosphorus in the soil was efficiently taken up by T. latifolia, especially at high N loads.ConclusionN loading in paludicultures with T. latifolia and P. australis boosts biomass production while kick-starting peatland ecosystem services including nutrient removal. Nutrient availability and pH appear to be decisive soil characteristics when it comes to crop selection.


2021 ◽  
Vol 18 (11) ◽  
pp. 3421-3444
Author(s):  
Veronica R. Rollinson ◽  
Julie Granger ◽  
Sydney C. Clark ◽  
Mackenzie L. Blanusa ◽  
Claudia P. Koerting ◽  
...  

Abstract. Coastal waters globally are increasingly impacted due to the anthropogenic loading of nitrogen (N) from the watershed. To assess dominant sources contributing to the eutrophication of the Little Narragansett Bay estuary in New England, we carried out an annual study of N loading from the Pawcatuck River. We conducted weekly monitoring of nutrients and nitrate (NO3-) isotope ratios (15N / 14N, 18O / 16O, and 17O / 16O) at the mouth of the river and from the larger of two wastewater treatment facilities (WWTFs) along the estuary, as well as seasonal along-river surveys. Our observations reveal a direct relationship between N loading and the magnitude of river discharge and a consequent seasonality to N loading into the estuary – rendering loading from the WWTFs and from an industrial site more important at lower river flows during warmer months, comprising ∼ 23 % and ∼ 18 % of N loading, respectively. Riverine nutrients derived predominantly from deeper groundwater and the industrial point source upriver in summer and from shallower groundwater and surface flow during colder months – wherein NO3- associated with deeper groundwater had higher 15N / 14N ratios than shallower groundwater. Corresponding NO3- 18O / 16O ratios were lower during the warm season, due to increased biological cycling in-river. Uncycled atmospheric NO3-, detected from its unique mass-independent NO3- 17O / 16O vs. 18O / 16O fractionation, accounted for < 3 % of riverine NO3-, even at elevated discharge. Along-river, NO3- 15N / 14N ratios showed a correspondence to regional land use, increasing from agricultural and forested catchments to the more urbanized watershed downriver. The evolution of 18O / 16O isotope ratios along-river conformed to the notion of nutrient spiraling, reflecting the input of NO3- from the catchment and from in-river nitrification and its coincident removal by biological consumption. These findings stress the importance of considering seasonality of riverine N sources and loading to mitigate eutrophication in receiving estuaries. Our study further advances a conceptual framework that reconciles with the current theory of riverine nutrient cycling, from which to robustly interpret NO3- isotope ratios to constrain cycling and source partitioning in river systems.


2021 ◽  
pp. 308-326
Author(s):  
Bridget A. Emmett ◽  
Brian Reynolds
Keyword(s):  

2021 ◽  
Vol 19 (3) ◽  
pp. 230-238
Author(s):  
Bussarakam Thitanuwat ◽  
◽  
Manaporn Wongsoonthornchai ◽  

Eutrophication of surface water is a globally widespread environmental problem. Similarly, in Thailand, the Nakhon Nayok River (NNR), located in an agriculture-based area, has been markedly affected by eutrophication problems. However, there are limited studies on significant nitrogen (N) sources during agricultural activities in the area. Therefore, this study examined the major sources and key flows of N loading to the surface water by applying material flow analysis (MFA) to the relevant seven subsystems in 2018. The results showed that aquaculture and rice cultivation were the main sources of nitrogen inputs and outputs. Both considerably contributed to the nitrogen loading to the surface water, yet nitrogen released from the aquaculture was five times higher than the rice cultivation. The nitrogen flux found in the study area was 0.11 kg/ha. Accordingly, creating wetlands for aquaculture wastewater treatment that could potentially remove nitrogen by 12% was recommended.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Volker Eras ◽  
Josefine Graffunder ◽  
Norus Ahmed ◽  
Jan C. Brune

Abstract Purpose Meniscus allograft transplantation (MAT) is a possible treatment for patients suffering with pain after meniscectomy. Here, peracetic acid (PAA) sterilised meniscus transplants were investigated on whether they would provide an adequate alternative to fresh-frozen transplants in their viscoelastic and mechanical properties. Methods In this analysis, 31 menisci donors (26 male and 5 female) were included. The average donor age was 49.87 years, ranging from 32 to 65 years. Menisci of matched pairs of knees underwent chemical sterilisation while counterparts were left fresh-frozen. Stiffness and load to failure were determined via suture retention. Further menisci were analysed while attached to the tibial bone block using a novel test device to mimic physiological load distribution. Meniscus relaxation, stiffness and failure loads were determined. Histology and biphasic properties of the menisci were examined and results were analysed using paired t-tests. Results A novel custom built test device allowed the application of physiological loads for suture retention testing and revealed no significant differences between PAA sterilised (14.85 ± 4.46 N/mm, 50.49 ± 17.01 N) and fresh-frozen (18.26 ± 4.46 N/mm, 59.49 ± 21.07 N) regarding stiffness and failure load, respectively. Furthermore, initial 200 N loading showed significantly higher strain in sterilised menisci (18.87 ± 1.56) compared to fresh frozen (13.81 ± 1.04). Load relaxation experiments demonstrated significantly lower relaxation for sterilised menisci (77.71 ± 1.62) compared to fresh-frozen (89.11 ± 1.00, p-value < 0.0001). Conclusion Peracetic acid sterilised human menisci performed equally to fresh-frozen counterparts in a suture retention test and in physiological failure testing providing an adequate alternative. However, meniscus relaxation, biphasic properties and strain were shown to be significantly different between the groups. A common problem of MAT is graft extrusion or shrinkage, therefore the parameters measured here should be considered and may influence meniscus extrusion after transplantation. Level of evidence n/a (experimental study)


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247194
Author(s):  
Ahmad H. Shihab ◽  
Ashkan Eliasy ◽  
Bernardo T. Lopes ◽  
Richard Wu ◽  
Lynn White ◽  
...  

Purpose To investigate the stress-strain behaviour of 9 soft contact lens materials, that are commonly used in the market, under uniaxial compression loading. Methods Seven types of hydrogel and two types of silicone-hydrogel soft contact lens materials were hydrated in phosphate-buffered saline (PBS) solution then subjected to uniaxial compression loads. The load rate was set to 16.0 N/min starting with two consecutive initial 5.0 N loading cycles followed by three relaxation periods of 4.0 min within which there were two more 5.0 N loading cycles and eventually, a full loading cycle that stopped at a load of 49.0 N. The load and contraction data obtained experimentally were analysed to derive the stress-strain behaviour. Finite Element (FE) analysis was then utilised to evaluate the performance of soft contact lenses on the human eye and handling lenses off the eye. Results Unlike tensile tests, all tested materials showed nonlinear behaviour when tested under compression. When fitted to first-order Ogden hyperelastic model, parameter μ was found to be varying in the range 0.12 to 0.74 MPa and material parameter α was found to be varying in the range 8.2 to 20.326 among the nine tested materials. Compression modulus of elasticity was 2.2 times higher than the tensile modulus of elasticity on average. FE simulation with nonlinear Ogden constitutive model showed a limited change (8%~12%) in the optical performance when compared to other material models, however, it predicted higher stress when the lens was simulated under bending during off-eye handling. Conclusions Compression tests revealed slightly nonlinear behaviour when materials were strained under compression stress down to 15% ~ 30% of their nominal heights. Considering the physiological compression loading range of 8 mmHg, secant moduli of elasticity were 1.5% to 6.9% higher than the tension moduli of elasticity depending on the material. Tensile-based moduli of elasticity could be used in FE analysis as a step towards simulating the optical performance of soft contact lenses on-eye. However, nonlinear compression-based material models are recommended for FE analysis of soft contact lenses when lens-handling is investigated off-eye.


Sign in / Sign up

Export Citation Format

Share Document