nf kappab
Recently Published Documents


TOTAL DOCUMENTS

1334
(FIVE YEARS 105)

H-INDEX

92
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Chaima Ezzine ◽  
Lea Loison ◽  
Christine Bole-Feysot ◽  
Pierre Dechelotte ◽  
Moise Coeffier ◽  
...  

The gut microbiota produces a wide variety of metabolites, which interact with intestinal cells and contribute to host physiology. These metabolites regulate intestinal cell activities by modulating either gene transcription or post-translational modifications of gut proteins. The effect of gut commensal bacteria on SUMOylation, an essential ubiquitin-like modification in intestinal physiology, remains however unknown. Here, we show that short chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) produced by the gut microbiota increase protein SUMOylation in different intestinal cell lines in a pH-dependent manner. We demonstrate that these metabolites induce an oxidative stress which inactivates intestinal deSUMOylases and promotes the hyperSUMOylation of chromatin-bound proteins. In order to determine the impact of these modifications on intestinal physiology, we focused on the NF-kappaB signaling pathway, a key player in inflammation known to be regulated by SUMOylation. We demonstrated that the hyperSUMOylation induced by SCFAs/BCFAs inhibits the activation of the NF-kappaB pathway in intestinal cells by blocking the degradation of the inhibitory factor IkappaBalpha in response to TNFalpha. This results in a decrease in pro-inflammatory cytokines expression, such as IL8 or CCL20, as well as a decrease in intestinal epithelial permeability in response to TNFalpha. Together, our results reveal that fatty acids produced by gut commensal bacteria regulate intestinal physiology by modulating SUMOylation and illustrate a new mechanism of dampening of host inflammatory responses by the gut microbiota.


2022 ◽  
Author(s):  
Brandon Cieniewicz ◽  
Varvara Kirillov ◽  
Isabel Daher ◽  
Xiaofan Li ◽  
Darby G Oldenburg ◽  
...  

Non-canonical NF-kappaB signaling is activated in B cells via TNF receptor superfamily members CD40, Lymphotoxin beta-R, and BAFF-R. The non-canonical pathway is required at multiple stages of B-cell maturation and differentiation, including the germinal center reaction. However, the role of this pathway in gammaherpesvirus latency is not well understood. Murine gammaherpesvirus 68 (MHV68) is a genetically tractable system used to define pathogenic determinants. Mice lacking the BAFF-R exhibit defects in splenic follicle formation and are greatly reduced for MHV68 latency. We report a novel approach to disrupt non-canonical NF-kappaB signaling exclusively in cells infected with MHV68. We engineered a recombinant virus that expresses a dominant negative form of IKKalpha, named IKKα-SA, with S176A and S180A mutations that prevent phosphorylation by NIK. We controlled for the transgene insertion by introducing two all-frame stop codons into the IKKα-SA gene. The IKKα-SA mutant but not the IKKα-SA.STOP control virus impaired LTbetaR-mediated activation of NF-kappaB p52 upon fibroblast infection. IKKα-SA expression did not impact replication in primary fibroblasts or in the lungs of mice following intranasal inoculation. However, the IKKα-SA mutant was severely defective in colonization of the spleen and in the establishment of latency compared to the IKKα-SA.STOP control and WT MHV68 at 16 dpi. Reactivation was undetectable in splenocytes infected with the IKKα-SA mutant, but reactivation in peritoneal cells was not impacted by IKKα-SA. Taken together, the non-canonical NF-kappaB signaling pathway is essential for the establishment of latency in the secondary lymphoid organs of mice infected with the murine gammaherpesvirus pathogen MHV68.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anja Adelina Giese ◽  
Aaron Babendreyer ◽  
Peter Krappen ◽  
Annika Gross ◽  
Pavel Strnad ◽  
...  

AbstractThe metalloproteinase ADAM17 contributes to inflammatory and proliferative responses by shedding of cell-surface molecules. By this ADAM17 is implicated in inflammation, regeneration, and permeability regulation of epithelial cells in the colon. ADAM17 maturation and surface expression requires the adapter proteins iRhom1 or iRhom2. Here we report that expression of iRhom2 but not iRhom1 is upregulated in intestinal tissue of mice with acute colitis. Our analysis of public databases indicates elevated iRhom2 expression in mucosal tissue and epithelial cells from patients with inflammatory bowel disease (IBD). Consistently, expression of iRhom2 but not iRhom1 is upregulated in colon or intestinal epithelial cell lines after co-stimulation with tumor necrosis factor (TNF) and interferon gamma (IFNgamma). This upregulation can be reduced by inhibition of Janus kinases or transcription factors NF-kappaB or AP-1. Upregulation of iRhom2 can be mimicked by iRhom2 overexpression and is associated with enhanced maturation and surface expression of ADAM17 which then results in increased cleavage of transforming growth factor (TGF) alpha and junctional adhesion molecule (JAM)-A. Finally, the induction of these responses is suppressed by inhibition of iRhom2 transcription. Thus, inflammatory induction of iRhom2 may contribute to upregulated ADAM17-dependent mediator and adhesion molecule release in IBD. The development of iRhom2-dependent inhibitors may allow selective targeting of inflammatory ADAM17 activities.


2021 ◽  
pp. 105228
Author(s):  
Yunlong Li ◽  
Pengfei Li ◽  
Qiyu He ◽  
Ruyi Zhang ◽  
Yang Li ◽  
...  

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Fengze Sun ◽  
Yuanyuan Liu ◽  
Tingting Gong ◽  
Qiuzhong Pan ◽  
Tong Xiang ◽  
...  

AbstractMost patients with hepatocellular carcinoma (HCC) are in the middle or advanced stage at the time of diagnosis, and the therapeutic effect is limited. Therefore, this study aimed to verify whether deoxythymidylate kinase (DTYMK) increased in HCC and was an effective therapeutic target in HCC. The findings revealed that the DTYMK level significantly increased and correlated with poor prognosis in HCC. However, nothing else is known, except that DTYMK could catalyze the phosphorylation of deoxythymidine monophosphate (dTMP) to form deoxythymidine diphosphate (dTDP). A number of experiments were performed to study the function of DTYMK in vitro and in vivo to resolve this knowledge gap. The knockdown of DTYMK was found to significantly inhibit the growth of HCC and increase the sensitivity to oxaliplatin, which is commonly used in HCC treatment. Moreover, DTYMK was found to competitively combine with miR-378a-3p to maintain the expression of MAPK activated protein kinase 2 (MAPKAPK2) and thus activate the phospho-heat shock protein 27 (phospho-HSP27)/nuclear factor NF-kappaB (NF-κB) axis, which mediated the drug resistance, proliferation of tumor cells, and infiltration of tumor-associated macrophages by inducing the expression of C-C motif chemokine ligand 5 (CCL5). Thus, this study demonstrated a new mechanism and provided a new insight into the role of mRNA in not only encoding proteins to regulate the process of life but also regulating the expression of other genes and tumor microenvironment through the competing endogenous RNA (ceRNA) mechanism.


2021 ◽  
Author(s):  
Xuehong Zhang ◽  
Furong Wang ◽  
Fanzhi Yan ◽  
Dan Huang ◽  
Haina Wang ◽  
...  

Abstract BackgroundRearrangements involving the fibroblast growth factor receptor 1 (FGFR1) gene result in 8p11 myeloproliferative syndrome (EMS), which is a rare and aggressive hematological malignancy that is often initially diagnosed as myelodysplastic syndrome (MDS). Clinical outcomes are typically poor due to relative resistance to tyrosine kinase inhibitors (TKIs) and rapid transformation to acute leukemia. Deciphering the transcriptomic signature of FGFR1 fusions may open new treatment strategies for FGFR1 rearrangement patients.MethodsDNA sequencing (DNA-seq) was performed for 20 MDS patients and whole exome sequencing (WES) was performed for one HOOK3-FGFR1 fusion positive patient. RNA sequencing (RNA-seq) was performed for 20 MDS patients and 8 healthy donors. Fusion genes were detected using the STAR-Fusion tool. Fluorescence in situ hybridization (FISH), quantitative real-time PCR (qRT-PCR), and Sanger sequencing were used to confirm the HOOK3-FGFR1 fusion gene. The phosphorylation antibody array was performed to validate the activation of nuclear factor-kappaB (NF-kappaB) signaling. ResultsWe identified frequently recurrent mutations of ASXL1 and U2AF1 in the MDS cohort, which is consistent with previous reports. We also identified a novel in-frame HOOK3-FGFR1 fusion gene in one MDS case with abnormal monoclonal B-cell lymphocytosis and ring chromosome 8. FISH analysis detected the FGFR1 break-apart signal in myeloid blasts only. qRT-PCR and Sanger sequencing confirmed the HOOK3-FGFR1 fusion transcript with breakpoints located at the 11th exon of HOOK3 and 10th exon of FGFR1, and Western blot detected the chimeric HOOK3-FGFR1 fusion protein that is presumed to retain the entire tyrosine kinase domain of FGFR1. The transcriptional feature of HOOK3-FGFR1 fusion was characterized by the significant enrichment of the NF-kappaB pathway by comparing the expression profiling of FGFR1 fusion positive MDS with 8 healthy donors and FGFR1 fusion negative MDS patients. Further validation by phosphorylation antibody array also showed NF-kappaB activation, as evidenced by increased phosphorylation of p65 (Ser 536) and of IKBalpha (Ser 32). ConclusionThe HOOK3-FGFR1 fusion gene may contribute to the pathogenesis of MDS and activate the NF-kappaB pathway. These findings highlight a potential novel approach for combination therapy for FGFR1 rearrangement patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Poeta ◽  
Valentina Cioffi ◽  
Vittoria Buccigrossi ◽  
Merlin Nanayakkara ◽  
Melissa Baggieri ◽  
...  

AbstractSARS-CoV-2 enters the intestine by the spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptors in enterocyte apical membranes, leading to diarrhea in some patients. Early treatment of COVID-19-associated diarrhea could relieve symptoms and limit viral spread within the gastrointestinal (GI) tract. Diosmectite, an aluminomagnesium silicate adsorbent clay with antidiarrheal effects, is recommended in some COVID-19 management protocols. In rotavirus models, diosmectite prevents pathogenic effects by binding the virus and its enterotoxin. We tested the trapping and anti-inflammatory properties of diosmectite in a SARS-CoV-2 model. Trapping effects were tested in Caco-2 cells using spike protein receptor-binding domain (RBD) and heat-inactivated SARS-CoV-2 preparations. Trapping was assessed by immunofluorescence, alone or in the presence of cells. The effect of diosmectite on nuclear factor kappa B (NF-kappaB) activation and CXCL10 secretion induced by the spike protein RBD and heat-inactivated SARS-CoV-2 were analyzed by Western blot and ELISA, respectively. Diosmectite bound the spike protein RBD and SARS-CoV-2 preparation, and inhibited interaction of the spike protein RBD with ACE2 receptors on the Caco-2 cell surface. Diosmectite exposure also inhibited NF-kappaB activation and CXCL10 secretion. These data provide direct evidence that diosmectite can bind SARS-CoV-2 components and inhibit downstream inflammation, supporting a mechanistic rationale for consideration of diosmectite as a management option for COVID-19-associated diarrhea.


Author(s):  
Megan McAleavy ◽  
Qian Zhang ◽  
Peter J. Ehmann ◽  
Jianing Xu ◽  
Matthew F. Wipperman ◽  
...  

A subset of hospitalized COVID-19 patients, particularly the aged and those with co-morbidities, develop the most severe form of the disease, characterized by Acute Respiratory Disease Syndrome (ARDS), coincident with experiencing a “cytokine storm." Here, we demonstrate that cytokines which activate the NF-kappaB pathway can induce Activin A. Patients with elevated Activin A, Activin B, and FLRG at hospital admission were associated with the most severe outcomes of COVID-19, including the requirement for mechanical ventilation, and all-cause mortality. A prior study showed that Activin A could decrease viral load, which indicated there might be a risk to giving COVID-19 patients an inhibitor of Activin. To evaluate this, the role for Activin A was examined in a hamster model of SARS-CoV2 infection, via blockade of Activin A signaling. The hamster model demonstrated that use of an anti-ActivinA antibody did not worsen the disease and there was no evidence for increase in lung viral load and pathology. The study indicates blockade of Activin signaling may be beneficial in treating COVID-19 patients experiencing ARDS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunna Li ◽  
Yun Xia ◽  
Sijia Yin ◽  
Fang Wan ◽  
Junjie Hu ◽  
...  

According to emerging studies, the excessive activation of microglia and the subsequent release of pro-inflammatory cytokines play important roles in the pathogenesis and progression of Parkinson’s disease (PD). However, the exact mechanisms governing chronic neuroinflammation remain elusive. Findings demonstrate an elevated level of NLRP3 inflammasome in activated microglia in the substantia nigra of PD patients. Activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Abnormal protein aggregation of α-synuclein (α-syn), a pathologically relevant protein of PD, were reported to activate the NLRP3 inflammasome of microglia through interaction with toll-like receptors (TLRs). This eventually releases pro-inflammatory cytokines through the translocation of nuclear factor kappa-B (NF-κB) and causes an impairment of mitochondria, thus damaging the dopaminergic neurons. Currently, therapeutic drugs for PD are primarily aimed at providing relief from its clinical symptoms, and there are no well-established strategies to halt or reverse this disease. In this review, we aimed to update existing knowledge on the role of the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis and microglial activation in PD. In addition, this review summarizes recent progress on the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis of microglia as a potential target for PD treatment by inhibiting microglial activation.


Sign in / Sign up

Export Citation Format

Share Document