catalytic domain
Recently Published Documents


TOTAL DOCUMENTS

2840
(FIVE YEARS 566)

H-INDEX

118
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Fatima S. Ugur ◽  
Mark J. S. Kelly ◽  
Danica Galonic Fujimori

The H3K4me3 chromatin modification, a hallmark of promoters of actively transcribed genes, is dynamically removed by the KDM5 family of histone demethylases. The KDM5 demethylases have a number of accessory domains, two of which, ARID and PHD1, lie within the catalytic domain. KDM5C, which has a unique role in neural development, harbors a number of mutations adjacent to its accessory domains that cause X-linked intellectual disability (XLID). The roles of these accessory domains remain unknown, limiting an understanding of how XLID mutations affect KDM5C activity. We find that while the ARID and PHD1 domains are required for efficient nucleosome demethylation, the PHD1 domain alone has an inhibitory role in KDM5C catalysis. We further find that binding of the H3 tail to PHD1 is coupled to the recognition of linker DNA by KDM5C. Our data suggests a model in which the PHD1 domain regulates DNA recognition by the ARID domain based on available substrate cues. In this model, recognition of distinct chromatin features is coupled to a conformational rearrangement of the ARID and PHD1 domains, which in turn modulates the positioning of the catalytic domain for efficient nucleosome demethylation. Importantly, we find that XLID mutations adjacent to the ARID and PHD1 domains alter the conformational state of these domains to enhance DNA binding. This results in the loss of specificity in chromatin recognition by KDM5C and renders catalytic activity sensitive to inhibition by linker DNA. Our findings suggest a unifying model by which XLID mutations alter chromatin recognition and enable euchromatin-specific dysregulation of demethylation by KDM5C.


Author(s):  
Iain A. Richard ◽  
Joshua T. Burgess ◽  
Kenneth J. O’Byrne ◽  
Emma Bolderson

The proteins within the Poly-ADP Ribose Polymerase (PARP) family encompass a diverse and integral set of cellular functions. PARP1 and PARP2 have been extensively studied for their roles in DNA repair and as targets for cancer therapeutics. Several PARP inhibitors (PARPi) have been approved for clinical use, however, while their efficacy is promising, tumours readily develop PARPi resistance. Many other members of the PARP protein family share catalytic domain homology with PARP1/2, however, these proteins are comparatively understudied, particularly in the context of DNA damage repair and tumourigenesis. This review explores the functions of PARP4,6-16 and discusses the current knowledge of the potential roles these proteins may play in DNA damage repair and as targets for cancer therapeutics.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Md Bashir Uddin ◽  
Mohammad Nurul Alam ◽  
Mahmudul Hasan ◽  
S. M. Bayejed Hossain ◽  
Mita Debnath ◽  
...  

Zoonotic and antimicrobial-resistant Escherichia coli (hereafter, E. coli) is a global public health threat which can lead to detrimental effects on human health. Here, we aim to investigate the antimicrobial resistance and the presence of mcr-1 gene in E. coli isolated from chicken feces. Ninety-four E. coli isolates were obtained from samples collected from different locations in Bangladesh, and the isolates were identified using conventional microbiological tests. Phenotypic disk diffusion tests using 20 antimicrobial agents were performed according to CLSI-EUCAST guidelines, and minimum inhibitory concentrations (MICs) were determined for a subset of samples. E. coli isolates showed high resistance to colistin (88.30%), ciprofloxacin (77.66%), trimethoprim/sulfamethoxazole (76.60%), tigecycline (75.53%), and enrofloxacin (71.28%). Additionally, the pathotype eaeA gene was confirmed in ten randomly selected E. coli isolates using primer-specific polymerase chain reaction (PCR). The presence of mcr-1 gene was confirmed using PCR and sequencing analysis in six out of ten E. coli isolates. Furthermore, sequencing and phylogenetic analyses revealed a similarity between the catalytic domain of Neisseria meningitidis lipooligosaccharide phosphoethanolamine transferase A (LptA) and MCR proteins, indicating that the six tested isolates were colistin resistant. Finally, the findings of the present study showed that E. coli isolated from chicken harbored mcr-1 gene, and multidrug and colistin resistance. These findings accentuate the need to implement strict measures to limit the imprudent use of antibiotics, particularly colistin, in agriculture and poultry farms.


2022 ◽  
Author(s):  
Kazuma Toida ◽  
Wakana Kushida ◽  
Hiroki Yamamoto ◽  
Kyoka Yamamoto ◽  
Kazuma Uesaka ◽  
...  

Colony pattern formations of bacteria with motility manifest complicated morphological self-organization phenomena. Leptolyngbya boryana is the filamentous cyanobacterial species, which has been used as a genetic model organism for studying metabolism including photosynthesis and nitrogen-fixation. Although a widely used type strain (wild type) of this species has not been reported to show any motile activity, we isolated a spontaneous mutant strain which shows active motility (gliding activity) to give rise to complicated colony patters, including comet-like wandering clusters and disk-like rotating vortices on solid media. Whole-genome resequencing identified multiple mutations on the genome in the mutant strain. We confirmed that inactivation of a candidate gene, dgc2 (LBDG_02920), in the wild type background was sufficient to give rise to motility and the morphological colony patterns. This gene encodes a protein, containing the GGDEF motif, which is conserved at the catalytic domain of diguanylate cyclase (DGC). Although DGC has been reported to be involved in biofilm formation, the mutant strain lacking dgc2 significantly facilitated biofilm formation, suggesting a role of DGC for suppressing both gliding motility and biofilm formation. Thus, L. boryana provides an excellent genetic model to study dynamic colony pattern formation, and novel insight on a role of c-di-GMP for biofilm formation.


2022 ◽  
Author(s):  
Jai Krishna Mahto ◽  
Neetu Neetu ◽  
Monica Sharma ◽  
Monika Dubey ◽  
Bhanu Prakash Vellanki ◽  
...  

Biodegradation of terephthalate (TPA) is a highly desired catabolic process for the bacterial utilization of this Polyethylene terephthalate (PET) depolymerization product, but to date, the structure of terephthalate dioxygenase (TPDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of TPA to a cis -diol is unavailable. In this study, we characterized the steady-state kinetics and first crystal structure of TPDO from Comamonas testosteroni KF1 (TPDO KF1 ). The TPDO KF1 exhibited the substrate specificity for TPA ( k cat / K m = 57 ± 9 mM −1 s −1 ). The TPDO KF1 structure harbors characteristics RO features as well as a unique catalytic domain that rationalizes the enzyme’s function. The docking and mutagenesis studies reveal that its substrate specificity to TPA is mediated by Arg309 and Arg390 residues, two residues positioned on opposite faces of the active site. Additionally, residue Gln300 is also proven to be crucial for the activity, its substitution to alanine decreases the activity ( k cat ) by 80%. Together, this study delineates the structural features that dictate the substrate recognition and specificity of TPDO. Importance The global plastic pollution has become the most pressing environmental issue. Recent studies on enzymes depolymerizing polyethylene terephthalate plastic into terephthalate (TPA) show some potential in tackling this. Microbial utilization of this released product, TPA is an emerging and promising strategy for waste-to-value creation. Research from the last decade has discovered terephthalate dioxygenase (TPDO), as being responsible for initiating the enzymatic degradation of TPA in a few Gram-negative and Gram-positive bacteria. Here, we have determined the crystal structure of TPDO from Comamonas testosteroni KF1 and revealed that it possesses a unique catalytic domain featuring two basic residues in the active site to recognize TPA. Biochemical and mutagenesis studies demonstrated the crucial residues responsible for the substrate specificity of this enzyme.


2022 ◽  
Author(s):  
Roberto Vázquez ◽  
Mateo Seoane-Blanco ◽  
Virginia Rivero-Buceta ◽  
Susana Ruiz ◽  
Mark J. van Raaij ◽  
...  

Phage lysins are a source of novel antimicrobials to tackle the bacterial antibiotic resistance crisis. The engineering of phage lysins is being explored as a game-changing technological strategy for introducing a more precise approach in the way we apply antimicrobial therapy. Such engineering efforts will benefit from a better understanding of lysin structure and function. In this work, the antimicrobial activity of the endolysin from Pseudomonas aeruginosa phage JG004, termed Pae87, has been characterized. This lysin had been previously identified as an antimicrobial agent candidate, able to interact with the Gram-negative surface and disrupt it. Further evidence is hereby provided on this matter, based on a structural and biochemical study. A high-resolution crystal structure of Pae87 complexed with a peptidoglycan fragment showed a separate substrate-binding region within the catalytic domain, 18 Å away from the catalytic site and located at the opposite side of the lysin molecule. This substrate binding region was conserved among phylogenetically related lysins lacking an additional cell wall binding domain, but not among those containing such a module. Two glutamic acids were identified as relevant for the peptidoglycan degradation activity, although Pae87 antimicrobial activity was seemingly unrelated to it. In contrast, an antimicrobial peptide-like region within Pae87 C-terminus, named P87, was found to be able to actively disturb the outer membrane and have antibacterial activity by itself. Therefore, we propose an antimicrobial mechanism for Pae87 in which the P87 peptide plays the role of binding to the outer membrane and disrupting the cell wall function, either with or without the participation of Pae87 catalytic activity.


Blood ◽  
2022 ◽  
Author(s):  
Laëtitia Kermasson ◽  
Dmitri Churikov ◽  
Aya Awad ◽  
Riham Smoom ◽  
Elodie Lainey ◽  
...  

Inherited bone marrow failure syndromes (IBMFS) represent a group of disorders typified by impaired production of one or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant Høyeraal-Hreidarsson (HH) syndrome are rare IBMFS characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. Here we identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in three unrelated patients presenting with a DC/HH phenotype consisting of early onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly and/or intrauterine growth retardation. All three patients carry a homozygous or compound heterozygous (in combination with a null-allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were however not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080-cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS combining clinical hallmarks of DC/HH with normal telomere length.


2022 ◽  
Author(s):  
Daniel Goldberg ◽  
Sumit Mukherjee ◽  
Eashan Sharma

Abstract During the intravascular stage of infection, the malaria parasite Plasmodium invades a host erythrocyte, multiplies within a parasitophorous vacuole (PV) and exits upon rupture of the PV and erythrocyte membranes in a process known as egress. Both egress and invasion are controlled by effector proteins discharged from specialized secretory organelles. The aspartic protease plasmepsin X (PM X) regulates activity for many of these effectors, but it is unclear how PM X accesses its diverse substrates that reside in different organelles. PM X also processes itself to generate different isoforms that remain present in terminal schizonts. The function of these different forms is not understood. We have mapped the autoprocessing cleavage sites and constructed parasites with cleavage site mutations. Surprisingly, all the cleavage mutant forms of PM X, including a quadruple mutant that remained full-length, retained in vitro activity, were trafficked normally in the parasites, and supported parasite growth and normal egress and invasion. Further analysis showed that the N-terminal half of the prodomain stays bound to the catalytic domain even after processing and is required for proper folding and intracellular trafficking of PM X. We find that this enzyme cleaves microneme and exoneme substrates before discharge, possibly in a common precursor organelle, while the rhoptry substrates that are dependent on PM X activity are cleaved after exoneme discharge into the PV. The data give insight into the temporal, spatial and biochemical control of this unusual but important aspartic protease.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hye Jin Ko ◽  
Bharat Bhusan Patnaik ◽  
Ki Beom Park ◽  
Chang Eun Kim ◽  
Snigdha Baliarsingh ◽  
...  

The inhibitor of nuclear factor-kappa B (NF-κB) kinase (IKK) is the core regulator of the NF-κB pathway against pathogenic invasion in vertebrates or invertebrates. IKKβ, -ε and -γ have pivotal roles in the Toll and immune deficiency (IMD) pathways. In this study, a homolog of IKKε (TmIKKε) was identified from Tenebrio molitor RNA sequence database and functionally characterized for its role in regulating immune signaling pathways in insects. The TmIKKε gene is characterized by two exons and one intron comprising an open reading frame (ORF) of 2,196 bp that putatively encodes a polypeptide of 731 amino acid residues. TmIKKε contains a serine/threonine protein kinases catalytic domain. Phylogenetic analysis established the close homology of TmIKKε to Tribolium castaneum IKKε (TcIKKε) and its proximity with other IKK-related kinases. The expression of TmIKKε mRNA was elevated in the gut, integument, and hemocytes of the last-instar larva and the fat body, Malpighian tubules, and testis of 5-day-old adults. TmIKKε expression was significantly induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenge in whole larvae and tissues, such as hemocytes, gut, and fat body. The knockdown of the TmIKKε messenger RNA (mRNA) expression significantly reduced the survival of the larvae against microbial challenges. Further, we investigated the induction patterns of 14 T. molitor antimicrobial peptides (AMPs) genes in TmIKKε gene-silencing model after microbial challenges. While in hemocytes, the transcriptional regulation of most AMPs was negatively regulated in the gut and fat body tissue of T. molitor, AMPs, such as TmTenecin 1, TmTenecin 4, TmDefensin, TmColeoptericin A, TmColeoptericin B, TmAttacin 1a, and TmAttacin 2, were positively regulated in TmIKKε-silenced individuals after microbial challenge. Collectively, the results implicate TmIKKε as an important factor in antimicrobial innate immune responses in T. molitor.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yuehui Tian ◽  
Shang Yang ◽  
Georg Nagel ◽  
Shiqiang Gao

Enzyme rhodopsins, including cyclase opsins (Cyclops) and rhodopsin phosphodiesterases (RhoPDEs), were recently discovered in fungi, algae and protists. In contrast to the well-developed light-gated guanylyl/adenylyl cyclases as optogenetic tools, ideal light-regulated phosphodiesterases are still in demand. Here, we investigated and engineered the RhoPDEs from Salpingoeca rosetta, Choanoeca flexa and three other protists. All the RhoPDEs (fused with a cytosolic N-terminal YFP tag) can be expressed in Xenopus oocytes, except the AsRhoPDE that lacks the retinal-binding lysine residue in the last (8th) transmembrane helix. An N296K mutation of YFP::AsRhoPDE enabled its expression in oocytes, but this mutant still has no cGMP hydrolysis activity. Among the RhoPDEs tested, SrRhoPDE, CfRhoPDE1, 4 and MrRhoPDE exhibited light-enhanced cGMP hydrolysis activity. Engineering SrRhoPDE, we obtained two single point mutants, L623F and E657Q, in the C-terminal catalytic domain, which showed ~40 times decreased cGMP hydrolysis activity without affecting the light activation ratio. The molecular characterization and modification will aid in developing ideal light-regulated phosphodiesterase tools in the future.


Sign in / Sign up

Export Citation Format

Share Document