individual fitness
Recently Published Documents


TOTAL DOCUMENTS

395
(FIVE YEARS 151)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ada Altieri ◽  
Giulio Biroli

We analyze the role of the Allee effect - a positive correlation between population density and mean individual fitness - for ecological communities formed by a large number of species. Our study is performed using the generalized Lotka-Volterra model with random interactions between species. We obtain the phase diagram and analyze the nature of the multiple equilibria phase. Remarkable differences emerge with respect to the logistic growth case, thus revealing the major role played by the functional response in determining aggregate behaviors of large ecosystems.


2022 ◽  
pp. 404-426
Author(s):  
Eugenio Bagnini ◽  
Giovanna Russo

The chapter proposes a methodological consideration on the use of mixed methods and the social opportunities of digital technologies in sports and wellness practices. The research carried out tries to answer the following question: What are the social repercussions and body care practices allowed by digital technologies in the field of sports and physical activities for well-being? The contribution investigates the relationship that is established between practitioners of individual fitness and wellness sports activities, mainly in gyms, and the changes attributable to HTI (human technology interactions) with digital devices (apps and participation in online groups). Through a qualitative-quantitative methodology approach, the multifunctionality of the aforementioned digital tools (on a mediatic, playful, and technological level) were observed in order to verify whether the convergence between digital and sports social worlds is an instrument of only subjective well-being or may indeed prove as a new collective way of sharing, participating in, and adopting healthy practices.


2021 ◽  
Author(s):  
Yuxin Jiang ◽  
Jingru Han ◽  
Ziqi Zhang ◽  
Xiangyang Chen ◽  
Canchao Yang

Abstract Distress calls, as a type of alarm call, play important roles in expressing bodily condition and conveying information concerning predation threats. In this study, we examined the communication via distress calls in parent–offspring and inter-offspring interactions. First, we used playback of chick distress calls of two sympatric breeders, the vinous-throated parrotbill Sinosuthora webbiana and the oriental reed warbler Acrocephalus orientalis, to the adults/chicks of these two species respectively and measured the responses of conspecifics or heterospecifics. The playback-to-chicks experiment showed that both species of chicks reduced the number of begging calls and begging duration time as a response to conspecific/heterospecific distress calls compared with natural begging and background noise controls. However, reed warbler chicks also reduced beak opening frequency in the response to conspecific distress calls compared with other playback stimuli. Second, the results of the playback-to-adults experiment showed that reed warbler adults could eavesdrop on distress calls of conspecific neighbors and sympatric heterospecifics. Furthermore, the nest-leaving behavior of reed warblers did not differ significantly when they heard the distress calls of conspecifics or parrotbills. Finally, reed warbler adults responded to conspecific distress calls more quickly than to heterospecific distress calls, while parrotbill adults presented the opposite response. Our results supported the warn-kin hypothesis and show that chick distress calls play an important role in conveying risk and the condition of chicks to enhance individual fitness. In addition, we also found that eavesdropping on distress calls is a congenital behavior that begins in the chick stage.


2021 ◽  
Vol 9 ◽  
Author(s):  
Christoph Thies ◽  
Richard A. Watson

Kin selection theory and multilevel selection theory are distinct approaches to explaining the evolution of social traits. The latter claims that it is useful to regard selection as a process that can occur on multiple levels of organisation such as the level of individuals and the level of groups. This is reflected in a decomposition of fitness into an individual component and a group component. This multilevel view is central to understanding and characterising evolutionary transitions in individuality, e.g., from unicellular life to multicellular organisms, but currently suffers from the lack of a consistent, quantifiable measure. Specifically, the two major statistical tools to determine the coefficients of such a decomposition, the multilevel Price equation and contextual analysis, are inconsistent and may disagree on whether group selection is present. Here we show that the reason for the discrepancies is that underlying the multilevel Price equation and contextual analysis are two non-equivalent causal models for the generation of individual fitness effects (thus leaving different “remainders” explained by group effects). While the multilevel Price equation assumes that the individual effect of a trait determines an individual's relative success within a group, contextual analysis posits that the individual effect is context-independent. Since these different assumptions reflect claims about the causal structure of the system, the correct approach cannot be determined on general theoretical or statistical grounds but must be identified by experimental intervention. We outline interventions that reveal the underlying causal structure and thus facilitate choosing the appropriate approach. We note that kin selection theory with its focus on the individual is immune to such inconsistency because it does not address causal structure with respect to levels of organisation. In contrast, our analysis of the two approaches to measuring group selection demonstrates that multilevel selection theory adds meaningful (falsifiable) causal structure to explain the sources of individual fitness and thereby constitutes a proper refinement of kin selection theory. Taking such refined causal structure into account seems indispensable for studying evolutionary transitions in individuality because these transitions are characterised by changes in the selection pressures that act on the respective levels.


2021 ◽  
Author(s):  
Hue Dinh ◽  
Ida Lundback ◽  
Anh The Than ◽  
Juliano Morimoto ◽  
Fleur Ponton

Nutrition is a central factor influencing immunity and resistance to infection, but the extent to which nutrition during development affects adult responses to infections is poorly understood. Our study investigated how the nutritional composition of the larval diet affects the survival, pathogen load, and food intake of adult fruit flies, Bactrocera tryoni, after bacterial septic infection. We found a sex-specific effect of larval diet composition on survival post-infection: survival rate was higher and bacterial load was lower for infected females fed sugar-rich larval diet compared with females fed protein-rich larval diet, an effect that was absent in males. Both males and females were heavier when fed a balanced larval diet compared to protein- or sugar-rich diet, while body lipid reserves were higher in the sugar-rich larval diet compared with other diets. Body protein reserve was lower for sugar-rich larval diets compared to other diets in males, but not females. Both females and males shifted their nutrient intake to ingest a sugar-rich diet when infected compared with sham-infected flies without any effect of the larval diet, suggesting that sugar-rich diets can be beneficial to fight off bacterial infection. Overall, our findings show that nutrition during early life can shape individual fitness in adulthood.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12455
Author(s):  
Elisabeth Yarwood ◽  
Claudia Drees ◽  
Jeremy E. Niven ◽  
Wiebke Schuett

Background Individuals within the same species often differ in their metabolic rates, which may covary with behavioural traits (such as exploration), that are consistent across time and/or contexts, and morphological traits. Yet, despite the frequent occurrence of sexual dimorphisms in morphology and behaviour, few studies have assessed whether and how sexes differ in metabolic trait covariances. Methods We investigated sex-specific relationships among resting or active metabolic rate (RMR and AMR, respectively) with exploratory behaviour, measured independently of metabolic rate in a novel environment, body size and body mass, in Carabus hortensis ground beetles. Results RMR, AMR and exploratory behaviour were repeatable among individuals across time, except for male RMR which was unrepeatable. Female RMR neither correlated with exploratory behaviour nor body size/body mass. In contrast, AMR was correlated with both body size and exploratory behaviour. Males with larger body sizes had higher AMR, whereas females with larger body sizes had lower AMR. Both male and female AMR were significantly related to exploratory behaviour, though the relationships between AMR and exploration were body mass-dependent in males and temperature-dependent in females. Discussion Differences between sexes exist in the covariances between metabolic rate, body size and exploratory behaviour. This suggests that selection acts differently on males and females to produce these trait covariances with potentially important consequences for individual fitness.


2021 ◽  
Vol 17 (12) ◽  
Author(s):  
Juliette Linossier ◽  
Caroline Casey ◽  
Isabelle Charrier ◽  
Nicolas Mathevon ◽  
Colleen Reichmuth

Bonding between mothers and their young is fundamental to mammalian reproductive behaviour and individual fitness. In social systems where the risk of confusing filial and non-filial offspring is high, mothers should demonstrate early, strong and consistent responses to their kin throughout the period of offspring dependence, irrespective of maternal traits. We tested this hypothesis through playback experiments in the northern elephant seal Mirounga angustirostris , a phocid species that breeds in high-density colonies. We found that mothers recognized their offspring throughout lactation and as early as 1–2 days after parturition. Measures of experience (age) and temperament (aggressivity) did not predict their response strength to filial playback treatments, nor did pup age or sex. Some mothers showed great consistency in behavioural responses throughout the lactation period, while others were less predictable. The strength of a female's response did not influence her pup's weaning weight; however, more consistent females weaned pups of higher mass. This is a rare demonstration of individual recognition among phocid mothers and their offspring, and suggests that consistency in maternal responsiveness may be an important social factor influencing the pup's growth and survival.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012002
Author(s):  
Leilei Zhu ◽  
Ke Zhao ◽  
Huaze Lin ◽  
Dan Liu ◽  
Li Li

Abstract With the development of the Internet of Things and 5G. Edge cloud technology has gradually become a research hotspot. When facing the massive and concurrent tasks of terminal users, reasonable resource scheduling strategy is a key technology. Because edge cloud needs to respond quickly to real-time tasks and ensure the stability of nodes at the same time, the optimal task scheduling strategy needs to be selected to meet the low latency requirements of edge users. In view of the above problems in resource allocation of edge cloud, this paper established a layered excellent gene replication strategy (HEGPSO model), in which the optimal replicator is added, and an evolutionary particle swarm optimization algorithm is proposed. In each iteration, the population is divided into three layers based on individual fitness. After that, the optimal replication factor is added to each layer of individuals to enhance the global search ability of the algorithm and ensure the good convergence of the algorithm. Finally, a balanced resource allocation model is established. Experiments show that the HEGPSO model proposed in this paper has high fitness and fast convergence speed, and is suitable for large-scale task access scenarios.


Author(s):  
T. Champneys ◽  
K. Ferry ◽  
S. Tomkinson ◽  
M. J. Genner ◽  
C. C. Ioannou

AbstractDuring the early stage of biological invasions, interactions occur between native and non-native species that do not share an evolutionary history. This can result in ecological naïveté, causing native species to exhibit maladaptive behavioural responses to novel enemies, leading to negative consequences for individual fitness and ecosystem function. The behavioural response of native to non-native species during novel encounters can determine the impact of non-native species, and restrict or facilitate their establishment. In this study we simulated novel encounters between a widespread invasive fish species, the Nile tilapia (Oreochromis niloticus), and a threatened native Manyara tilapia (Oreochromis amphimelas). In the first experiment single adult O. niloticus were presented with a stimulus chamber (a transparent plastic cylinder) which was empty during control trials and contained a pair of juvenile O. amphimelas in stimulus trials. In the second experiment, the reciprocal set up was used, with pairs of juvenile O. amphimelas as the focal species and adult O. niloticus as the stimulus. Both species approached the stimulus chamber more readily during stimulus trials, a behavioural response which would increase the prevalence of interspecific interactions in situ. This included physical aggression, observed from the competitively dominant O. niloticus towards O. amphimelas. Despite an initial lack of fear shown by O. amphimelas, close inspection of the stimulus chamber often resulted in an energetically costly dart response. Under field conditions we predict that naïve native individuals may readily approach O. niloticus, increasing the likelihood of interactions and exacerbating widely reported negative outcomes.


Behaviour ◽  
2021 ◽  
pp. 1-27
Author(s):  
Ming Kai Tan ◽  
Stefan Schöneich ◽  
Tony Robillard

Abstract Individual fitness can be boosted by behavioural strategies that maximise mate-finding probability while minimising predation risk. Animals that use acoustics to find mates may benefit from using both stationary calling and active exploration, but these also expose them to different types of predators. Studying calling and searching behaviours concurrently allows us to understand their evolutionary trade-offs between survival and reproduction. Unlike most other crickets, lebinthine males alternate between singing and exploration to find females, which offer a unique and excellent opportunity to test for inter-individual differences and behavioural syndrome between call properties and exploratory behaviours. Our data demonstrate that call properties and exploratory behaviour were repeatable. We did not, however, find that call properties correlate with exploration as some consistently exploratory individuals produce longer calls while others produce shorter calls. Our study suggests that lebinthine males use different combinations of calling and exploratory behaviours to cope with unpredictable risk–benefit scenarios.


Sign in / Sign up

Export Citation Format

Share Document