hippocampal pyramidal neurons
Recently Published Documents


TOTAL DOCUMENTS

429
(FIVE YEARS 58)

H-INDEX

67
(FIVE YEARS 6)

2021 ◽  
Vol 12 ◽  
Author(s):  
Giriraj Sahu ◽  
Ray W. Turner

Neuronal signal transmission depends on the frequency, pattern, and timing of spike output, each of which are shaped by spike afterhyperpolarizations (AHPs). There are classically three post-spike AHPs of increasing duration categorized as fast, medium and slow AHPs that hyperpolarize a cell over a range of 10 ms to 30 s. Intensive early work on CA1 hippocampal pyramidal cells revealed that all three AHPs incorporate activation of calcium-gated potassium channels. The ionic basis for a fAHP was rapidly attributed to the actions of big conductance (BK) and the mAHP to small conductance (SK) or Kv7 potassium channels. In stark contrast, the ionic basis for a prominent slow AHP of up to 30 s duration remained an enigma for over 30 years. Recent advances in pharmacological, molecular, and imaging tools have uncovered the expression of a calcium-gated intermediate conductance potassium channel (IK, KCa3.1) in central neurons that proves to contribute to the slow AHP in CA1 hippocampal pyramidal cells. Together the data show that the sAHP arises in part from a core tripartite complex between Cav1.3 (L-type) calcium channels, ryanodine receptors, and IK channels at endoplasmic reticulum-plasma membrane junctions. Work on the sAHP in CA1 pyramidal neurons has again quickened pace, with identified contributions by both IK channels and the Na-K pump providing answers to several mysteries in the pharmacological properties of the sAHP.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kang Wang ◽  
Fuhua Xu ◽  
James Maylie ◽  
Jing Xu

Anti-Müllerian hormone (AMH) is a paracrine factor generated peripherally by the gonads to regulate gonadal function in adult mammals. We recently reported that AMH and AMH-specific receptor Anti-Müllerian hormone receptor 2 (AMHR2) are expressed in the hippocampus, and exogenous AMH protein rapidly increased synaptic transmission and long-term synaptic plasticity at the CA3-CA1 synapses. Here we examined the cell-specific expression of AMHR2 and the cellular mechanism of rapid boosting effect of AMH on synaptic transmission in mouse hippocampus. Immunofluorescence staining showed that AMHR2 was specifically expressed in the soma and dendrites of hippocampal pyramidal neurons, but not glial cells. Electrophysiological recordings on acute hippocampal slices showed that AMH did not affect AMPAR-mediated or N-Methyl-D-aspartic acid receptor (NMDAR)-mediated excitatory postsynaptic currents at the CA3-CA1 synapses. The small-conductance Ca2+-activated K+ channel (SK2) and A-type K+ channel (Kv4.2) contribute to shaping excitatory postsynaptic potentials (EPSPs) at the CA3-CA1 synapses. Bath application of apamin to block SK2 did not alter AMH effect on increasing EPSPs, whereas blocking Kv4.2 channel with 4-aminopyridine, or chelating internal Ca2+ with BAPTA occluded the action of AMH on boosting EPSPs. Kv4.2 activity is regulated by p38 mitogen-activated kinase (MAPK). Blocking p38 MAPK with SB203580 occluded the effect of AMH on increasing EPSPs. These results show that Kv4.2 channel contributes to the rapid action of AMH on boosting synaptic transmission in a Ca2+- and p38 MAPK-dependent manner. Our findings provide functional evidence that AMH enhances synaptic transmission through Kv4.2 channel in the hippocampus, suggesting a possible role of Kv4.2 channel in AMH-regulated neuronal process underlying learning and memory.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012110
Author(s):  
E I Gerasimov ◽  
A I Erofeev ◽  
S A Pushkareva ◽  
A V Bol’shakova ◽  
A A Borodinova ◽  
...  

Abstract The method of optogenetics has spread widely in neurobiology over the past 10 years and has found extensive application in various fields of this sciences. It allows to control and regulate cellular activity with high spatial and temporal resolution. In this study, optogenetic activation was applied to astrocytes expressing ChR2. Optogenetic stimulation parameters were determined, in which the frequency of spontaneous currents of hippocampal pyramidal neurons significantly changed. In the future, it is planned to use the obtained data on the modes of optogenetic stimulation of astrocytes to normalize the functions of the hippocampus in mice-models of Alzheimer’s disease.


2021 ◽  
Vol 14 ◽  
Author(s):  
Achira Roy ◽  
Victor Z. Han ◽  
Angela M. Bard ◽  
Devin T. Wehle ◽  
Stephen E. P. Smith ◽  
...  

Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.


2021 ◽  
Author(s):  
Zhi-Hao Mu ◽  
Zhi-Min Zhao ◽  
Su-Su Yang ◽  
Lei Zhou ◽  
Zhong-Yi Qian ◽  
...  

Abstract Diabetes and cognitive dysfunction are highly prevalent disorders, while the underlying mechanism is still elusive. The effects of Gastrodin on central nervous system have been emphasized recently. In this study, we aim to explore the potential mechanism leading to cognitive dysfunction in diabetes and the therapeutic effect of Gastrodin. Diabetes was induced by a single injection of streptozotocin. RNA sequencing technique was used to identify the potential factors involved. Western blot and immunofluorescence were applied to detect the protein expression. Our results have shown that spatial learning was impaired and hippocampal pyramidal neurons were damaged in diabetic rats, which could be ameliorated by Gastrodin intervention. Transcriptional analysis identified differential expression genes, which were confirmed by qPCR and western blot. Furthermore, p21 activated kinase 2 (PAK2) was selected and its inhibitor could promote the survival of primary hippocampal neurons. It suggested that PAK2 pathway may be involved in cognitive dysfunction in diabetes and a therapeutic target for Gastrodin intervention.


2021 ◽  
Vol 22 (17) ◽  
pp. 9613
Author(s):  
Evgenii Gerasimov ◽  
Alexander Erofeev ◽  
Anastasia Borodinova ◽  
Anastasia Bolshakova ◽  
Pavel Balaban ◽  
...  

Optogenetics approach is used widely in neurobiology as it allows control of cellular activity with high spatial and temporal resolution. In most studies, optogenetics is used to control neuronal activity. In the present study optogenetics was used to stimulate astrocytes with the aim to modulate neuronal activity. To achieve this goal, light stimulation was applied to astrocytes expressing a version of ChR2 (ionotropic opsin) or Opto-α1AR (metabotropic opsin). Optimal optogenetic stimulation parameters were determined using patch-clamp recordings of hippocampal pyramidal neurons’ spontaneous activity in brain slices as a readout. It was determined that the greatest increase in the number of spontaneous synaptic currents was observed when astrocytes expressing ChR2(H134R) were activated by 5 s of continuous light. For the astrocytes expressing Opto-α1AR, the greatest response was observed in the pulse stimulation mode (T = 1 s, t = 100 ms). It was also observed that activation of the astrocytic Opto-a1AR but not ChR2 results in an increase of the fEPSP slope in hippocampal neurons. Based on these results, we concluded that Opto-a1AR expressed in hippocampal astrocytes provides an opportunity to modulate the long-term synaptic plasticity optogenetically, and may potentially be used to normalize the synaptic transmission and plasticity defects in a variety of neuropathological conditions, including models of Alzheimer’s disease and other neurodegenerative disorders.


2021 ◽  
Author(s):  
Roland Zemla ◽  
Jason James Moore ◽  
Jayeeta Basu

The hippocampus is critical for the formation and recall of episodic memory. Place cells, hippocampal pyramidal neurons which show location-specific modulation of firing rates during navigation3, 4, together form a map of environmental contingencies that is presumed to serve long-term memory of that environment. However, recent studies call to question this tenant of the field by demonstrating high levels of representational drift in the hippocampal population with respect to the duration of episodic memories in mice. In the present study, we aimed to resolve this fundamental challenge of theories of hippocampal function by examining the formation and stability of the hippocampal representation of an environment as animals experience explicit rule-based learning and memory recall. Leveraging the stability of two-photon calcium imaging, we tracked activity of the same set of CA1 pyramidal neurons during learning in an operant, head-fixed, spatial navigation task. We found that place cells are rapidly recruited into task-dependent spatial maps, resulting in emergence of orthogonal as well as overlapping representations of space. Further, task-selective place cells used a diverse set of remapping strategies to represent changing task demands that accompany learning. We found behavioral performance dependent divergence of spatial maps between trial types occurs during learning. Finally, imaging during remote recall spanning up to 30 days revealed increased stabilization of learnt place cell maps following memory consolidation. Our findings suggest that a subset of place cells is recruited by rule based spatial learning, actively reconfigured to represent task-relevant spatial relationships, and stabilized following successful learning and consolidation.


2021 ◽  
Vol 118 (27) ◽  
pp. e2026411118
Author(s):  
Hongbin Li ◽  
Vishaal Rajani ◽  
Lu Han ◽  
Danielle Chung ◽  
James E. Cooke ◽  
...  

N-methyl-D-aspartate (NMDA) receptors (NMDARs), a principal subtype of excitatory neurotransmitter receptor, are composed as tetrameric assemblies of two glycine-binding GluN1 subunits and two glutamate-binding GluN2 subunits. NMDARs can signal nonionotropically through binding of glycine alone to its cognate site on GluN1. A consequence of this signaling by glycine is that NMDARs are primed such that subsequent gating, produced by glycine and glutamate, drives receptor internalization. The GluN1 subunit contains eight alternatively spliced isoforms produced by including or excluding the N1 and the C1, C2, or C2’ polypeptide cassettes. Whether GluN1 alternative splicing affects nonionotropic signaling by NMDARs is a major outstanding question. Here, we discovered that glycine priming of recombinant NMDARs critically depends on GluN1 isoforms lacking the N1 cassette; glycine priming is blocked in splice variants containing N1. On the other hand, the C-terminal cassettes—C1, C2, or C2’—each permit glycine signaling. In wild-type mice, we found glycine-induced nonionotropic signaling at synaptic NMDARs in CA1 hippocampal pyramidal neurons. This nonionotropic signaling by glycine to synaptic NMDARs was prevented in mice we engineered, such that GluN1 obligatorily contained N1. We discovered in wild-type mice that, in contrast to pyramidal neurons, synaptic NMDARs in CA1 inhibitory interneurons were resistant to glycine priming. But we recapitulated glycine priming in inhibitory interneurons in mice engineered such that GluN1 obligatorily lacked the N1 cassette. Our findings reveal a previously unsuspected molecular function for alternative splicing of GluN1 in controlling nonionotropic signaling of NMDARs by activating the glycine site.


Sign in / Sign up

Export Citation Format

Share Document