dlc coating
Recently Published Documents


TOTAL DOCUMENTS

444
(FIVE YEARS 104)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 12 (3) ◽  
pp. 489-493
Author(s):  
Yung-Sheng Yen ◽  
Han-Yi Cheng ◽  
Hung-Ta Lin

The aim of the present study was to investigate the effect of nano-etched surface and diamond-like carbon (DLC) surface acupuncture needles on human pain perception, by finite element method (FEM). Skin models were reconstructed by 3D computer programs. The stress is an important role in acupuncture needle applications for clinical treatment. Many studies have investigated finite element researches for acupuncture; however, few have evaluated a model for acupuncture with and without\ modified surface. The results revealed that abnormal focusing stress was found when acupuncture with nano-etched surface. Moreover, the unbalance stress was found on the top of the skin model in the nano-etched group, the highest stress also appeared in the top region. Acupuncture with nano-etched surface would be an effective means for stimulating skin. These results indicate subtle but significant effects of acupuncture stimulation with nano-etched surface needles, compared to acupuncture with untreated needles in healthy participants.


2022 ◽  
Vol 905 ◽  
pp. 22-29
Author(s):  
Li Jun Han ◽  
Qing Wen Wu ◽  
Xue Song Wu ◽  
Ze Zhang ◽  
Hai Sheng Ma

This paper introduces the principle of PACVD coating technology, technical characteristics, equipment composition and material characteristics of CrN+DLC. Taking H13 steel as the research object, its surface was treated with CrN+DLC. The microstructure, bonding state and hardness of the interface were studied by means of metallography, SEM, hardness and component distribution of the surface layer. The anti-crack ability and grade of DLC layer were analyzed by studying the shape of crack distribution with Rockwell hardness indentation, and the high quality layer with crack grade of HF1 was obtained. With the dual properties of diamond and graphite of DLC, it can make the die surface have lower friction coefficient, higher hardness, higher impact toughness, better solid lubrication performance and higher corrosion resistance. Surface DLC coating technology provides a new solution to improve the performance of the die.


2022 ◽  
pp. 108818
Author(s):  
Elhadji Cheikh Talibouya Ba ◽  
Marcello Rosa Dumont ◽  
Paulo Sérgio Martins ◽  
Bárbara da Silva Pinheiro ◽  
Matheus Philippe Martins da Cruz ◽  
...  

2022 ◽  
Vol 25 ◽  
Author(s):  
Paulo Sérgio Martins ◽  
José Rubens Gonçalves Carneiro ◽  
Elhadji Cheikh Talibouya Ba ◽  
Vitor Ferreira Vieira ◽  
Diego Boaventura Amaral ◽  
...  

2021 ◽  
Vol 0 ◽  
pp. 1-7
Author(s):  
Hikmetnur Danisman ◽  
Fatih Celebi ◽  
Sengul Danisman ◽  
Ali Altug Bicakci

Objectives: The aim of this study is to apply a diamond-like carbon (DLC) coating on orthodontic brackets and to examine the effects of the coating on surface properties and friction. Materials and Methods: 0.022-inch upper right canine brackets, 0.018-inch stainless steel wires, and 0.019 × 0.025-inch stainless steel wires were used in the study. Half of the brackets were treated with physical vapor deposition technique and coated with DLC. Different binary groups constituted of coated and uncoated brackets and wires were subjected to friction experiments using the Instron universal testing machine (Instron, Norwood, MA, USA). The surface properties of the coatings were evaluated using Raman, Scanning Electron Microscopy, and non-contact optical profilometer. Results: The friction force values between the DLC-coated brackets and the stainless-steel wires in both dimensions were found to be statistically significantly lower than the friction force between the uncoated brackets and the wires (P < 0.001). The surface roughness value, especially around the slot groove decreased significantly in the coated brackets (P < 0.05). DLC coating layer thickness is approximately 1.0 μm (806 nanometers). Conclusion: DLC coating improves the surface properties of orthodontic brackets, and DLC coating process remarkably reduced the friction force.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052038
Author(s):  
A V Sidashov ◽  
M V Boiko ◽  
E I Luneva ◽  
A M Popov

Abstract The combination of unique physicochemical, mechanical and tribological properties of diamond-like coatings determines the prospects for their use in critical friction units, including those operating in a rarefied atmosphere and vacuum. The properties of diamond-like carbon (DLC) coatings depend on the contribution of the sp2 and sp3 fractions of the carbon hybrid atomic electron orbitals. Modern methods of determining the graphite and diamond proportion in coatings are time-consuming and insufficiently accurate. In addition, the determination of the sp3/sp2 ratio is often difficult due to the displacement of the energy position of the C1s electron line. In this paper, the change in the chemical state of carbon over the thickness of a diamond-like coating is studied by X-ray photoelectron spectroscopy. Analysis of the carbon line fine structure of the differential graphite spectra (sp2 bonds) and diamond (sp3 bonds) allowed us to establish the parameter δ, which determines the ratio of the graphite and diamond components in the DLC coating. Profiling with Ar+ ions of the diamondlike coating surface showed that with an increase in the etching time, the proportion of amorphized carbon increases, which means that the antifriction properties increase with the abrasion of the coating. The obtained regularities allow us to predict changes in the tribological properties of DLC coatings during operation. Ion profiling also allows to determine the thickness of coatings with high accuracy.


Author(s):  
Dipankar Choudhury ◽  
Christopher Rincon ◽  
Ronghua Wei ◽  
Mourad Benamara ◽  
Min Zou

2021 ◽  
Vol 16 (4) ◽  
pp. 263-270
Author(s):  
Takumi Kani ◽  
Takayuki Tokoroyama ◽  
Noritsugu Umehara ◽  
Motoyuki Murashima ◽  
Woo-Young Lee ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7206
Author(s):  
Rehan Zahid ◽  
Muhammad Usman Bhutta ◽  
Riaz Ahmad Mufti ◽  
Muhammad Usman Abdullah ◽  
Haji Hassan Masjuki ◽  
...  

The environmental concerns associated with artificially formulated engine oils have forced a shift towards bio-based lubricants. The deposition of hard coatings on engine components and migrating to environmentally friendly green lubricants can help in this regard. Chemically modified forms of vegetable oils, with better low-temperature characteristics and enhanced thermo-oxidative stability, are suitable substitutes to conventional lubricant base oils. The research presented in this manuscript was undertaken to experimentally investigate the wear and friction performance of a possible future generation of an environmentally friendly bio-based lubricant as a potential replacement for conventional engine lubricants. In order to quantify the tribological benefits which can be gained by the deposition of DLC coatings, (an (a-C:H) hydrogenated DLC coating and an (a-C:H:W) tungsten-doped DLC coating) were applied on the cam/tappet interface of a direct acting valve train assembly of an internal combustion engine. The tribological correlation between DLC-coated engine components, lubricant base oils and lubricant additives have been thoroughly investigated in this study using actual engine operating conditions. Two additive-free base oils (polyalphaolefines (PAO) and chemically-modified palm oil (TMP)) and two multi-additive-containing lubricants were used in this investigation. Real-time drive torque was measured to determine the friction force, detailed post-test analysis was performed, which involved the use of a specialized jig to measure camlobe wear. An optical profilometer was used to measure the wear on the tappet, high-resolution scanning electron microscopy was employed to study the wear mechanism and energy-dispersive X-ray spectroscopy was performed on the tested samples to qualitatively access the degradation of the coating. When using additive-free TMP, a low friction coefficient was observed for the cam/tappet interface. The presence of additives further improved the friction characteristics of TMP, resulting in reduced average friction torque values. A tremendous enhancement in wear performance was recorded with a-C:H-coated parts and the coating was able to withstand the test conditions with little or no delamination.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
L. Natrayan ◽  
Anjibabu Merneedi ◽  
Dhinakaran Veeman ◽  
S. Kaliappan ◽  
P. Satyanarayana Raju ◽  
...  

The diamond-like carbon- (DLC-) coating technique is used in the sliding parts of automotive engines, among other applications, to reduce friction and wear. In this work, DLC has been coated on the Aluminium 5051 sample to assess the mechanical and tribological properties. A sputtering deposition mechanism is used, and the DLC is coated using a graphite target. The developed DLC coatings are tested for adhesion strength, hardness, chemical composition using XRD, and wear behaviour. The developed DLC thin films have considerably increased the wear behaviour of the Aluminium 5051 sample and have fulfilled the objective of this study. The XRD data indicated the presence of amorphous carbon in the coating with a threefold increase to the hardness of the naked aluminium. This study provides insight into improving the aluminium wear resistance by developing a considerably hard coating.


Sign in / Sign up

Export Citation Format

Share Document