phenyl acetylene
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 12)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Struan Cummins

<p>This thesis describes the synthesis, structures and reactivities of gallium and aluminium complexes supported by β-diketiminato ligands ([CR{C(R)N(R’)}₂]-, abbrev. [(BDIR’)]-).  Chapter 1 gives a general introduction into the trends and properties that distinguish the heavier p-block elements from their lighter counterparts. An introduction into the theory of multiple bond formation, both homonuclear and heteronuclear, in the heavy p-block elements is provided and a summary of the sterically demanding ligands required to stabilise these complexes is introduced. The β-diketiminato ligand framework utilised in this study is introduced and the methods of generation of low valent gallium and aluminium complexes supported by the BDIDIPP ligand are discussed.  Chapter 2 discusses the reactivity of the complex BDIDIPPGa with diazo- compounds in the quest to isolate a complex with a formal gallium-carbon double bond. BDIDIPPGa reacts with two equivalents of both trimethylsilyldiazomethane and diazofluorene, presumably through the target gallium-carbon double bond intermediate. No reaction is observed with di-tert-butyldiazomethane, while BDIDIPPGa catalyses the decomposition of diphenyldiazomethane into tetraphenylethene. Three new β-diketiminato gallium(I) complexes were synthesised: ArBDIDIPPGa, BDIAr*Ga and BDIAr’Ga. ArBDIDIPPGa also reacted with two equivalents of trimethylsilyldiazomethane, presumably through the target gallium-carbon double bond intermediate. BDIAr*Ga and BDIAr’Ga both inserted into the C-H bond of trimethylsilyldiazomethane to give BDIAr*Ga(H)C(N2)SiMe₃ and BDIAr’Ga(H)C(N2)SiMe₃ respectively. Upon addition of diazofluorene to BDIAr*Ga, one of the aromatic protons of the BDIAr* ligand was abstracted by the diazofluorene, resulting in coordination of one of the flanking phenyl groups to the gallium centre.  Chapter 3 discusses an investigation into the formation of formal double bonds between aluminium and phosphorus, and gallium and phosphorus. The proposed ‘deprotonation/elimination’ method, reacting BDIDIPPM(PHAr)Cl (M = Al, Ga Ar = Ph, Mes) with nBuLi, resulted in the formation of intractable mixtures of products. Direct synthesis by the addition of MesPLi₂ to BDIDIPPMCl₂ (M = Al, Ga) resulted in the formation of BDIDIPPM(PHMes)Cl (M = Al, Ga). Changing the elimination product to TMS-Cl, through the synthesis of BDIDIPPM(P(TMS)Ph)Cl (M = Al, Ga), resulted in the synthesis of BDIDIPPAl(P(TMS)Ph)Cl, which showed no signs of elimination occurring upon heating to 110 °C. BDIDIPPGa(P(TMS)Ph)Cl could not be isolated, potentially as the complex was undergoing the desired elimination of TMS-Cl, but the resulting complex was decomposing. Changing the elimination product to ethane, through the synthesis of BDIDIPPAl(PHMes)Et, resulted in no sign of elimination occurring upon heating to 110 °C. Reduction of BDIDIPPMCl₂ (M = Al, Ga) in the presence of bistrimethylsilylacetylene, as part of the synthesis of BDIDIPPMLi₂ (M = Al, Ga) salts, was unsuccessful, as was the reaction of BDIDIPPGa with bistrimethylsilylacetylene. Reduction of MesPCl₂ with potassium metal in the presence of BDIDIPPGa resulted in an intractable mixture of products, reduction with magnesium resulted in the formation of (MesP)₃ and (MesP)₄. Addition of MesPH₂ to BDIDIPPGa resulted in the formation of BDIDIPPGa(H)P(H)Mes, which did not undergo H₂ elimination at 110 °C. The synthesis of BDIDIPPAl was unsuccessful as the product could not be isolated cleanly. The synthesis of ArBDIDIPPAl resulted in the intramolecular rearrangement of the ligand to give a five-membered aluminium containing ring. The synthesis of BDIAr*Al stalled at the formation of BDIAr*Al(Me)I due to the steric bulk of the ligand blocking the second substitution of iodine from occurring.  Chapter 4 discusses the reactivity of the primary phosphanide complexes BDIDIPPAl(PHMes)Cl, BDIDIPPAl(PHMes)Et and BDIDIPPGa(H)P(H)Mes with phenyl acetylene, 4-nitro-phenyl isocyanate, phenyl isothiocyanate, dicyclohexyl carbodiimide, cyclohexene, benzophenone, benzaldehyde, selenium, sulfur, and methyl iodide. Reactivity was not observed for phenyl acetylene, dicyclohexyl carbodiimide or benzophenone with any of the phosphanides. Reactivity with the phosphanides was observed with cyclohexene, however rapid decomposition of the products occurred and they were unable to be identified. BDIDIPPAl(PHMes)Cl and BDIDIPPGa(H)P(H)Mes showed no reactivity with benzaldehyde, however, the ethyl ligand of BDIDIPPAl(PHMes)Et reacted with the aldehyde proton, eliminating ethane and substituting the PhC(O)- ligand onto the aluminium centre. Reactivity with the phosphanides was observed with both sulfur and selenium, however multiple different products were formed, none of which were successfully isolated. Reactivity between the phosphanides and methyl iodide was observed, with the P-M bond appearing to be cleaved and formation of a M-I bond occurring. 4-nitro-phenyl isocyanate and phenyl isothiocyanate underwent insertion reactions into the M-P bond, however only BDIDIPPAl(Cl)N(4-NO₂-Ph)C(O)P(H)Mes was able to be isolated and fully characterised.  Finally, chapter 5 summarises the results of this research and provides an outlook at the future direction of this field of research.</p>


2021 ◽  
Author(s):  
◽  
Struan Cummins

<p>This thesis describes the synthesis, structures and reactivities of gallium and aluminium complexes supported by β-diketiminato ligands ([CR{C(R)N(R’)}₂]-, abbrev. [(BDIR’)]-).  Chapter 1 gives a general introduction into the trends and properties that distinguish the heavier p-block elements from their lighter counterparts. An introduction into the theory of multiple bond formation, both homonuclear and heteronuclear, in the heavy p-block elements is provided and a summary of the sterically demanding ligands required to stabilise these complexes is introduced. The β-diketiminato ligand framework utilised in this study is introduced and the methods of generation of low valent gallium and aluminium complexes supported by the BDIDIPP ligand are discussed.  Chapter 2 discusses the reactivity of the complex BDIDIPPGa with diazo- compounds in the quest to isolate a complex with a formal gallium-carbon double bond. BDIDIPPGa reacts with two equivalents of both trimethylsilyldiazomethane and diazofluorene, presumably through the target gallium-carbon double bond intermediate. No reaction is observed with di-tert-butyldiazomethane, while BDIDIPPGa catalyses the decomposition of diphenyldiazomethane into tetraphenylethene. Three new β-diketiminato gallium(I) complexes were synthesised: ArBDIDIPPGa, BDIAr*Ga and BDIAr’Ga. ArBDIDIPPGa also reacted with two equivalents of trimethylsilyldiazomethane, presumably through the target gallium-carbon double bond intermediate. BDIAr*Ga and BDIAr’Ga both inserted into the C-H bond of trimethylsilyldiazomethane to give BDIAr*Ga(H)C(N2)SiMe₃ and BDIAr’Ga(H)C(N2)SiMe₃ respectively. Upon addition of diazofluorene to BDIAr*Ga, one of the aromatic protons of the BDIAr* ligand was abstracted by the diazofluorene, resulting in coordination of one of the flanking phenyl groups to the gallium centre.  Chapter 3 discusses an investigation into the formation of formal double bonds between aluminium and phosphorus, and gallium and phosphorus. The proposed ‘deprotonation/elimination’ method, reacting BDIDIPPM(PHAr)Cl (M = Al, Ga Ar = Ph, Mes) with nBuLi, resulted in the formation of intractable mixtures of products. Direct synthesis by the addition of MesPLi₂ to BDIDIPPMCl₂ (M = Al, Ga) resulted in the formation of BDIDIPPM(PHMes)Cl (M = Al, Ga). Changing the elimination product to TMS-Cl, through the synthesis of BDIDIPPM(P(TMS)Ph)Cl (M = Al, Ga), resulted in the synthesis of BDIDIPPAl(P(TMS)Ph)Cl, which showed no signs of elimination occurring upon heating to 110 °C. BDIDIPPGa(P(TMS)Ph)Cl could not be isolated, potentially as the complex was undergoing the desired elimination of TMS-Cl, but the resulting complex was decomposing. Changing the elimination product to ethane, through the synthesis of BDIDIPPAl(PHMes)Et, resulted in no sign of elimination occurring upon heating to 110 °C. Reduction of BDIDIPPMCl₂ (M = Al, Ga) in the presence of bistrimethylsilylacetylene, as part of the synthesis of BDIDIPPMLi₂ (M = Al, Ga) salts, was unsuccessful, as was the reaction of BDIDIPPGa with bistrimethylsilylacetylene. Reduction of MesPCl₂ with potassium metal in the presence of BDIDIPPGa resulted in an intractable mixture of products, reduction with magnesium resulted in the formation of (MesP)₃ and (MesP)₄. Addition of MesPH₂ to BDIDIPPGa resulted in the formation of BDIDIPPGa(H)P(H)Mes, which did not undergo H₂ elimination at 110 °C. The synthesis of BDIDIPPAl was unsuccessful as the product could not be isolated cleanly. The synthesis of ArBDIDIPPAl resulted in the intramolecular rearrangement of the ligand to give a five-membered aluminium containing ring. The synthesis of BDIAr*Al stalled at the formation of BDIAr*Al(Me)I due to the steric bulk of the ligand blocking the second substitution of iodine from occurring.  Chapter 4 discusses the reactivity of the primary phosphanide complexes BDIDIPPAl(PHMes)Cl, BDIDIPPAl(PHMes)Et and BDIDIPPGa(H)P(H)Mes with phenyl acetylene, 4-nitro-phenyl isocyanate, phenyl isothiocyanate, dicyclohexyl carbodiimide, cyclohexene, benzophenone, benzaldehyde, selenium, sulfur, and methyl iodide. Reactivity was not observed for phenyl acetylene, dicyclohexyl carbodiimide or benzophenone with any of the phosphanides. Reactivity with the phosphanides was observed with cyclohexene, however rapid decomposition of the products occurred and they were unable to be identified. BDIDIPPAl(PHMes)Cl and BDIDIPPGa(H)P(H)Mes showed no reactivity with benzaldehyde, however, the ethyl ligand of BDIDIPPAl(PHMes)Et reacted with the aldehyde proton, eliminating ethane and substituting the PhC(O)- ligand onto the aluminium centre. Reactivity with the phosphanides was observed with both sulfur and selenium, however multiple different products were formed, none of which were successfully isolated. Reactivity between the phosphanides and methyl iodide was observed, with the P-M bond appearing to be cleaved and formation of a M-I bond occurring. 4-nitro-phenyl isocyanate and phenyl isothiocyanate underwent insertion reactions into the M-P bond, however only BDIDIPPAl(Cl)N(4-NO₂-Ph)C(O)P(H)Mes was able to be isolated and fully characterised.  Finally, chapter 5 summarises the results of this research and provides an outlook at the future direction of this field of research.</p>


2021 ◽  
pp. 1-6
Author(s):  
Bolatito Eunice Olanipekun ◽  
Mangala Gowri Ponnapalli ◽  
Hemendra Kumar Patel ◽  
Kiran Munipalle ◽  
Karimulla Shaik

2020 ◽  
Vol 2020 (43) ◽  
pp. 4069-4082
Author(s):  
Yuanyuan Min ◽  
Faqiang Leng ◽  
Bruno F. Machado ◽  
Pierre Lecante ◽  
Pierre Roblin ◽  
...  

2020 ◽  
Vol 65 (10) ◽  
pp. 61-66
Author(s):  
Trang Nguyen Thi Minh ◽  
Trang Tran Thi Thu ◽  
Hoan Duong Quoc

Salicylic aldehydes, amine, and phenyl acetylene could react under the solvent-free, metal-free conditions to form propargylamines 1-4 via A3 coupling reaction. The yield of the reaction was up to 83% for 5h. In acetonitrile, the amine became a catalyst to form 6-bromo-3-(5-bromo-2-hydroxybenzyl)-2-phenyl-4Hchromen-4-one (5). Under microwave conditions, it took about 20 min to complete the reaction and gave the same yields as theconventional method. Structures of these compounds were firm with NMR, MS spectra.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 199
Author(s):  
Yu Zang ◽  
Yinghui Lun ◽  
Masahiro Teraguchi ◽  
Takashi Kaneko ◽  
Hongge Jia ◽  
...  

Three new phenylacetylene monomers having one or two carbamate groups were synthesized and polymerized by using (Rh(norbornadiene)Cl)2 as an initiator. The resulting polymers had very high average molecular weights (Mw) of 1.4–4.8 × 106, with different solubility and membrane-forming abilities. The polymer having two carbamate groups and no hydroxy groups in the monomer unit showed the best solubility and membrane-forming ability among the three polymers. In addition, the oxygen permeability coefficient of the membrane was more than 135 times higher than that of a polymer having no carbamate groups and two hydroxy groups in the monomer unit with maintaining similar oxygen permselectivity. A better performance in membrane-forming ability and oxygen permeability may be caused by a more extended and flexible cis-transoid conformation and lower polarity. On the other hand, the other two new polymers having one carbamate group and two hydroxy groups in the monomer unit showed lower performances in membrane-forming abilities and oxygen permeabilities. It may be caused by a very tight cis-cisoid conformation, which was maintained by intramolecular hydrogen bonds.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1226 ◽  
Author(s):  
Ivo Kuřitka ◽  
Vladimír Sedlařík ◽  
Diana Harea ◽  
Evghenii Harea ◽  
Pavel Urbánek ◽  
...  

In this paper, we present the use of a disubstituted polyacetylene with high thermal stability and quantum yield as a fluorescence label for the identification, tracing, recycling, and eventually anti-counterfeiting applications of thermoplastics. A new method was developed for the dispersion of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA) into polymer blends. For such purposes, four representative commodity plastics were selected, i.e., polypropylene, low-density polyethylene, poly(methyl methacrylate), and polylactide. Polymer recycling was mimicked by two reprocessing cycles of the material, which imparted intensive luminescence to the labelled polymer blends when excited by proper illumination. The concentration of the labelling polymer in the matrices was approximately a few tens ppm by weight. Luminescence was visible to the naked eye and survived the simulated recycling successfully. In addition, luminescence emission maxima were correlated with polymer polarity and glass transition temperature, showing a marked blueshift in luminescence emission maxima with the increase in processing temperature and time. This blueshift results from the dispersion of the labelling polymer into the labelled polymer matrix. During processing, the polyacetylene chains disentangled, thereby suppressing their intermolecular interactions. Moreover, shear forces imposed during viscous polymer melt mixing enforced conformational changes, which shortened the average conjugation length of PTMSDPA chain segments. Combined, these two mechanisms shift the luminescence of the probe from a solid- to a more solution-like state. Thus, PTMSDPA can be used as a luminescent probe for dispersion quality, polymer blend homogeneity, and processing history, in addition to the identification, tracing, and recycling of thermoplastics.


RSC Advances ◽  
2020 ◽  
Vol 10 (41) ◽  
pp. 24176-24189
Author(s):  
Mina Nasibipour ◽  
Elham Safaei ◽  
Marziyeh Sadat Masoumpour ◽  
Andrzej Wojtczak

A new Ni(ii) complex, was synthesized from the reaction of a non-innocent o-aminophenol ligand, and Ni(OAc)2.


2019 ◽  
Vol 118 ◽  
pp. 275-279 ◽  
Author(s):  
Yuanbo Zhao ◽  
Xiacong Zhang ◽  
Wen Li ◽  
Afang Zhang

Sign in / Sign up

Export Citation Format

Share Document