seedling survival
Recently Published Documents


TOTAL DOCUMENTS

943
(FIVE YEARS 189)

H-INDEX

57
(FIVE YEARS 5)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
Pedro Barreto ◽  
Mariana L. C. Arcuri ◽  
Rômulo Pedro Macêdo Lima ◽  
Celso Luis Marino ◽  
Ivan G. Maia

Plant dicarboxylate carriers (DICs) transport a wide range of dicarboxylates across the mitochondrial inner membrane. The Arabidopsis thalianaDIC family is composed of three genes (AtDIC1, 2 and 3), whereas two genes (EgDIC1 and EgDIC2) have been retrieved in Eucalyptus grandis. Here, by combining in silico and in planta analyses, we provide evidence that DICs are partially redundant, important in plant adaptation to environmental stresses and part of a low-oxygen response in both species. AtDIC1 and AtDIC2 are present in most plant species and have very similar gene structure, developmental expression patterns and absolute expression across natural Arabidopsis accessions. In contrast, AtDIC3 seems to be an early genome acquisition found in Brassicaceae and shows relatively low (or no) expression across these accessions. In silico analysis revealed that both AtDICs and EgDICs are highly responsive to stresses, especially to cold and submergence, while their promoters are enriched for stress-responsive transcription factors binding sites. The expression of AtDIC1 and AtDIC2 is highly correlated across natural accessions and in response to stresses, while no correlation was found for AtDIC3. Gene ontology enrichment analysis suggests a role for AtDIC1 and AtDIC2 in response to hypoxia, and for AtDIC3 in phosphate starvation. Accordingly, the investigated genes are induced by submergence stress in A. thaliana and E. grandis while AtDIC2 overexpression improved seedling survival to submergence. Interestingly, the induction of AtDIC1 and AtDIC2 is abrogated in the erfVII mutant that is devoid of plant oxygen sensing, suggesting that these genes are part of a conserved hypoxia response in Arabidopsis.


Author(s):  
A. F. Malo ◽  
A. Taylor ◽  
M. Díaz

Refuge–mediated apparent competition is the mechanism by which invasive plants increase pressure on native plants by providing refuge for generalist consumers. In the UK, the invasive Rhododendron ponticum does not provide food for generalist seed consumers like rodents, but evergreen canopy provides refuge from rodent predators, and predation and pilferage risk are key factors affecting rodent foraging and caching behaviour. Here we used a seed removal/ seed fate experiment to understand how invasion by an evergreen shrub can alter seed dispersal, seed fate and early recruitment of native trees. We used seeds of four species, small and wind–dispersed (sycamore maple Acer pseudoplatanus and European ash Fraxinus excelsior) and large and animal–dispersed (pedunculate oak Quercus robur and common hazel Corylus avellana), and monitored seed predation and caching in open woodland, edge habitats, and under Rhododendron. In the open woodland, wind–dispersed seeds had a higher probability of being eaten in situ than cached seeds, while the opposite occurred with animal–dispersed seeds. The latter were removed from the open woodland and edge habitats and cached under Rhododendron. This pattern was expected if predation risk was the main factor influencing the decision to eat or to cach a seed. Enhanced dispersal towards Rhododendron cover did not increase the prospects for seed survival, as density of hazel and oak saplings under its cover was close to zero as compared to open woodland, possibly due to increased cache pilferage or low seedling survival under dense shade, or both. Enhanced seed predation of ash and sycamore seeds close to Rhododendron cover also decreased recruitment of these trees. Rhododendron patches biased rodent foraging behaviour towards the negative (net predation) side of the conditional rodent / tree interaction. This effect will potentially impact native woodland regeneration and further facilitate Rhododendron spread due to refuge–mediated apparent competition.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1994
Author(s):  
Xiaoxia Li ◽  
Weiguang Yang ◽  
Junting Jia ◽  
Pincang Zhao ◽  
Dongmei Qi ◽  
...  

Sheepgrass is a perennial native grass species in China, and it can tolerate high levels of salt stress with an aggressive and vigorous rhizome system. Many salt-stress-responsive genes have been identified in sheepgrass. In this study, we report the cloning and characterization of a novel salt-induced gene, LcSAIN3 (Leymus chinensis salt-induced 3), from sheepgrass. Expression analysis confirmed that LcSAIN3 was induced by PEG, ABA, and salt treatments, and the expression of LcSAIN3 was significantly increased in salt-tolerant germplasms under salt treatment. Subcellular localization analysis indicated that the GFP-LcSAIN3 protein was mainly localized in the chloroplasts. The heterologous expression of LcSAIN3 in Arabidopsis increased the seed germination rate of transgenic plants under salt, ABA, and mannitol treatments. The seedling survival rate, plant height, and fresh weight of the transgenic plants were higher than those of WT plants under salt stress. The overexpression of LcSAIN3 caused a relatively high accumulation of free proline, enhanced SOD activity, and led to the upregulation of several stress-responsive genes such as AtRD26, AtRD29B, AtSOS1, and AtP5CS1. These results suggest that LcSAIN3 could be a potential target for molecular breeding to improve plants’ salt tolerance.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1745
Author(s):  
Rebecca A. Sheridan ◽  
Anthony S. Davis

Nursery-grown tree seedlings are a vital component of successful restoration and reforestation programs, useful when calls for increased planting for industrial forest management are made, and a tool for climate change mitigation. One of the most extensively planted and studied trees in Western North America is Douglas-fir. Building on that body of work, this review was conducted to identify if the root-to-shoot ratio (root:shoot, R:S), a commonly referred-to metric in reforestation planning, yields meaningful guidance for producing seedlings that are better able to establish across a variety of field conditions. The results indicated that there is wide variability in R:S of nursery-grown seedlings. The relationship between R:S and subsequent root growth and seedling survival varies depending on Douglas-fir variety, seedling stocktypes, and site conditions. The biological and physiological basis for using R:S remains, and likely could be used to enhance seedling quality; however, there is an ongoing need for planning and collaboration between researchers and practitioners to identify how to best deploy this evaluation tool.


2021 ◽  
Vol 9 ◽  
Author(s):  
João Costa e Silva ◽  
Rebecca Jordan ◽  
Brad M. Potts ◽  
Elizabeth Pinkard ◽  
Suzanne M. Prober

We evaluated population differences and drought-induced phenotypic selection on four seedling traits of the Australian forest tree Eucalyptus pauciflora using a glasshouse dry-down experiment. We compared dry and mesic populations and tested for directional selection on lamina length (reflecting leaf size), leaf shape, the node of ontogenetic transition to the petiolate leaf (reflecting the loss of vegetative juvenility), and lignotuber size (reflecting a recovery trait). On average, the dry population had smaller and broader leaves, greater retention of the juvenile leaf state and larger lignotubers than the mesic population, but the populations did not differ in seedling survival. While there was statistical support for directional selection acting on the focal traits in one or other population, and for differences between populations in selection gradient estimates for two traits, only one trait—lamina length—exhibited a pattern of directional selection consistent with the observed population differences being a result of past adaptation to reduce seedling susceptibility to acute drought. The observed directional selection for lamina length in the mesic population suggests that future increases in drought risk in the wild will shift the mean of the mesic population toward that of the dry population. Further, we provide evidence suggesting an early age trade-off between drought damage and recovery traits, with phenotypes which develop larger lignotubers early being more susceptible to drought death. Such trade-offs could have contributed to the absence of population mean differences in survival, despite marked differentiation in seedling traits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chuangwei Fang ◽  
Huayang Chen ◽  
Diana Castillo-Díaz ◽  
Bin Wen ◽  
Kun-Fang Cao ◽  
...  

Exposure to high-temperature stress (HTS) during early regeneration in plants can profoundly shape seed germination, seedling growth, and development, thereby providing stress resilience. In this study, we assessed how the timing of HTS, which was implemented as 8 h in 40°C, could affect the early regeneration stages and phytohormone concentration of four hemiepiphytic (Hs) and four non-hemiepiphytic (NHs) Ficus species. Their seed germination, seedling emergence, and seedling survival probabilities and the concentrations of three endogenous phytohormones, abscisic acid (ABA), indole-3-acetic acid (IAA), and salicylic acid (SA) were assessed after HTS imposed during imbibition, germination, and emergence. In both groups, seeds were more sensitive to HTS in the early regeneration process; stress experienced during imbibition affected emergence and survival, and stress experienced during germination affected subsequent emergence. There was no effect from HTS when received after emergence. Survival was highest in hemiepiphytes regardless of the HTS treatment. The phytohormones showed growth form- and regeneration stage-specific responses to HTS. Due to the HTS treatment, both SA and ABA levels decreased in non-hemiepiphytes during imbibition and germination; during germination, IAA increased in hemiepiphytes but was reduced in non-hemiepiphytes. Due to the HTS treatment experienced during emergence ABA and IAA concentrations were greater for hemiepiphytes but an opposite effect was seen in the two growth forms for the SA concentration. Our study showed that the two growth forms have different strategies for regulating their growth and development in the early regeneration stages in order to respond to HTS. The ability to respond to HTS is an ecologically important functional trait that allows plant species to appropriately time their seed germination and seedling development. Flexibility in modulating species regeneration in response to HTS in these subtropical and tropical Ficus species could provide greater community resilience under climate change.


2021 ◽  
Author(s):  
Robert A Slesak ◽  
Sara G Kelso ◽  
Marcella A Windmuller-Campione

Abstract Survival of planted seedlings following a regeneration harvest can be challenging and early interventions through silvicultural treatments may be required for successful stand establishment. We tested the influence of soil amendment (biochar+compost, compost-only, or control) and vegetation control (VC; applied either initially or annually for five years using brush saws) on the growth and survival of jack pine at three sites in northern Minnesota. Application of the biochar+compost soil amendment increased seedling survival by 30% relative to the control in the first year, but there was no significant difference in survival among soil amendment treatments after five years. Both soil amendments increased diameter growth relative to the control (14% increase with biochar+compost, 10% increase with compost only), with most of the biochar+compost effect attributed to the compost. Annual VC increased diameter growth by 17% relative to initial VC, but overall effects on survival and growth were generally small relative to reported effects of VC via herbicide. The limited short-term influence of biochar and manual VC on growth and survival of jack pine indicates that these practices are likely not an effective means to increase jack pine establishment, but other benefits (e.g., increased carbon storage) may become apparent with time. Study Implications Emerging changes to forest conditions and climate are likely to create challenges for successful regeneration in even-aged silvicultural systems. Early interventions such as application of soil amendments and vegetation control may be required to increase seedling survival. However, our findings indicate that biochar application and manual vegetation control were not very effective at increasing survival and growth of planted jack pine seedlings across a range of site conditions in northern Minnesota. Further study is warranted to determine whether other biochar application rates and techniques or other forms of vegetation control are more effective for successful jack pine establishment.


2021 ◽  
Vol 70 (2) ◽  
Author(s):  
Silvana de Paula Quintão Scalon

The objective of this study was to evaluate the effect of aluminum and the mitigating potential of H2O2 on the stress and antioxidant responses in canola (Brassica napus var. oleifera (Moench) Delile) affecting the emergence and initial growth of plants. Canola seeds, cultivar Hyola 61, were treated with different concentrations of H2O2 solution (0.0, 0.075, and 0.15 M), and later sown under different concentrations of aluminum (0.0, 10, 20, and 30 mmolc dm-3). After 20 days of plant emergence, survival and growth characteristics were evaluated. 20, 30, 40, 50, and 60 days after emergence, height, chlorophyll index, chlorophyll a fluorescence, and the activity of superoxide dismutase in the roots were determined. The canola is sensitive to aluminum, and the treatment of seeds with H2O2 0.15 M mitigated the stress caused by the highest dose of aluminum. H2O2 treatment enabled high emergence but did not favor seedling survival or growth. The H2O2 did not increase SOD activity. The chlorophyll a fluorescence characteristics proved the sensitivity of canola to aluminum, but the presence of H2O2 maintained the stability and functionality of photosystem II.


Sign in / Sign up

Export Citation Format

Share Document