vibration exercise
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 69)

H-INDEX

32
(FIVE YEARS 3)

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 741
Author(s):  
Marc Kermorgant ◽  
Sirine Hammoud ◽  
Laurence Mahieu ◽  
Thomas Geeraerts ◽  
Arnaud Beck ◽  
...  

Neuro-ophthalmological changes have been reported after prolonged exposure to microgravity; however, the pathophysiology remains unclear. The objectives of the present study were twofold: (1) to assess the neuro-ophthalmological impact of 21 days of head-down bed rest (HDBR) and (2) to determine the effects of resistance vibration exercise (RVE) alone or combined with nutritional supplementation (NeX). In this case, 12 healthy male subjects completed three interventions of a 21-day HDBR: a control condition without countermeasure (CON), a condition with resistance vibration exercise (RVE) comprising of squats, single leg heel and bilateral heel raises and a condition using also RVE associated with nutritional supplementation (NeX). Intraocular pressure (IOP) was assessed by applanation tonometry. Retinal nerve fiber layer thickness (RNFLT) was assessed with spectral-domain optical coherence tomography, before HDBR and between Day 2 and Day 4 after each session of HDBR. In CON condition, IOP was preserved; while in RVE and NeX conditions, IOP was increased. In CON condition, RNFLT was preserved after HDBR. RVE and NeX conditions did not have significant effects on RNFLT. This study showed that a 3-week HDBR did not induce significant ophthalmological changes. However, RVE induced an elevation in IOP after HDBR. Nutritional supplementation did not reduce or exacerbate the side effects of RVE.


2021 ◽  
Vol 11 (12) ◽  
pp. 5733
Author(s):  
Danúbia C. Sá-Caputo ◽  
Ana Carolina Coelho-Oliveira ◽  
Juliana Pessanha-Freitas ◽  
Laisa Liane Paineiras-Domingos ◽  
Ana Cristina Rodrigues Lacerda ◽  
...  

COVID-19 infection frequently leaves the infected subjects with impairments of multi-organs, the so-called post COVID-19 syndrome, which needs to be adequately addressed. The perspective of this narrative review is to verify the possible role of whole-body vibration exercise in the post-COVID-19 rehabilitation of these patients. Publications reporting the use of WBV exercises to counteract fatigue, muscle weakness, neurological manifestations, pain, quality of life, quality of sleep, lung commitments, and mental conditions in different clinical conditions were selected. Considering all the findings described in the current review, it seems that WBV exercise might be potentially useful and effective in the rehabilitation of post COVID-19 syndrome, being able to positively influence fatigue, muscle weakness, and quality of life without any side-effects. Controlled studies are mandatory to define the best protocols to be proposed, which need to be tailored to the individual and clinical characteristics.


Author(s):  
Kaitlin D. Lyons ◽  
Aaron G. Parks ◽  
Oluwagbemiga Dadematthews ◽  
Nilophar Zandieh ◽  
Paige McHenry ◽  
...  

Military foot marches account for 17–22% of Army musculoskeletal injuries (MSI), with low back pain (LBP) being a common complaint. Core-exercise and whole-body vibration (WBV) have been shown to decrease LBP in patients with chronic low back MSI. This study investigated if WBV and/or core-exercise influenced LBP or posture associated with a military ruck march. A randomized control trial with three groups: (1) WBV and core-exercise (WBVEx); (2) core-exercise alone (Ex); and (3) control evaluated the effects of core-exercise and WBV on LBP during/after a two 8 K foot marches with a 35 lb rucksack. The intervention groups completed three weeks of core-exercise training with/without WBV. Outcome measurements included visual analog scale (VAS), algometer, posture and electromyography (EMG). LBP, pressure threshold, and posture were elevated throughout the foot march regardless of group. LBP remained elevated for 48 h post foot march (p = 0.044). WBVEx and Ex did not have a significant effect on LBP. WBVEx and Ex both decreased muscle sensitivity and increased trunk flexion (p < 0.001) during the second foot march (FM2). The 8 K foot marches significantly increased LBP. Core-exercise training with/without WBV decreases low back muscle sensitivity. WBV and core-exercise increases trunk flexion which may help improve performance and may influence LBP.


2021 ◽  
Vol 11 ◽  
Author(s):  
Luciana M. M. Santos ◽  
Ana Carolina C. Oliveira ◽  
Sueli F. Fonseca ◽  
Angélica F. Silva ◽  
Joyce N. V. Santos ◽  
...  

ObjectiveTo compare the effect of Whole-Body Vibration Exercise (WBVE) applied in push-up modified and half-squat positions, on handgrip strength (HS) and on the electromyography registry (EMGrms) of the flexor digitorum superficialis muscle (FDSM) of the dominant hand.MethodsNineteen healthy women (age 23.40 ± 4.03 years, bodyweight: 58.89 ± 9.87 kg), performed in a randomized order five different tests: (S1) Control; (S2) Push-up modified; (S3) Push-up placebo; (S4); Half-squatting; (S5) Half-squatting placebo. The HS and the EMGrms were assessed at baseline and immediately after the tests. ANOVA two-way design mixed test, with Tukey post hoc, was used to evaluate the HS, EMGrms and the ratio between EMGrms and HS, i.e., neural ratio (NR). Thus, the lower NR represents the greater neuromuscular modifications. The statistical significance level was set up at p &lt; 0.05.ResultsWBVE on S2 increased HS compared to the stimulus applied to the S4 (p = 0.0001). The increase in HS was associated with a reduction in the EMGrms of the FDSM (p &lt; 0.001) and a lower NR (p &lt; 0.0001), i.e., greater neuromuscular modifications, in the S2 compared to the S4 after the tests.ConclusionThe distance of the stimulus and the positioning on the vibratory platform influence the maximum muscular strength due to neuromuscular modifications of hands in healthy women.


Sign in / Sign up

Export Citation Format

Share Document