trapped particles
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 39)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xiaofei Zeng ◽  
Bin Zhang ◽  
Xiang Han ◽  
Zhijie Chen ◽  
Wei Xiong ◽  
...  

2021 ◽  
pp. 100178
Author(s):  
Pedro A.S. Jorge ◽  
Inês A. Carvalho ◽  
Filipe M. Marques ◽  
Vanessa Pinto ◽  
Paulo H. Santos ◽  
...  

2021 ◽  
Vol 2021 (11) ◽  
pp. 113205
Author(s):  
Matthieu Mangeat ◽  
Thomas Guérin ◽  
David S Dean

Abstract Optically trapped particles are often subject to a non-conservative scattering force arising from radiation pressure. In this paper, we present an exact solution for the steady state statistics of an overdamped Brownian particle subjected to a commonly used force field model for an optical trap. The model is the simplest of its kind that takes into account non-conservative forces. In particular, we present the exact results for certain marginals of the full three-dimensional steady state probability distribution, in addition to results for the toroidal probability currents that are present in the steady state, as well as for the circulation of these currents. Our analytical results are confirmed by numerical solution of the steady state Fokker–Planck equation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abolfazl Aqhili ◽  
Sara Darbari

AbstractIn this report, we propose the closed pack array of gold discs on glass, as a dual mode plasmonic tweezers that benefits from two trapping modes. The first trapping mode is based on leaky surface plasmon mode (LSPM) on the gold discs with a longer penetration depth in the water and a longer spatial trapping range, so that target nanoparticles with a radius of 100 nm can be attracted toward the gold surface from a vertical distance of about 2 µm. This trapping mode can help to overcome the inherent short range trapping challenge in the plasmonic tweezers. The second trapping mode is based on the dimer surface plasmonic mode (DSPM) in the nano-slits between the neighboring gold discs, leading to isolated and strong trapping sites for nanoparticles smaller than 34 nm. The proposed plasmonic tweezers can be excited in both LSPM and DSPM modes by switching the incident wavelength, resulting in promising and complementary functionalities. In the proposed plasmonic tweezers, we can attract the target particles towards the gold surface by LSPM gradient force, and trap them within a wide half widthhalfmaximum (HWHM) that allows studying the interactions between the trapped particles, due to their spatial proximity. Then, by switching to the DSPM trapping mode, we can rearrange the particles in a periodic pattern of isolated and stiff traps. The proposed plasmonic structure and the presented study opens a new insight for realizing efficient, dual-mode tweezers with complementary characteristics, suitable for manipulation of nanoparticles. Our thermal simulations demonstrate that the thermal-induced forces does not interefe with the proposed plasmonic tweezing.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1231
Author(s):  
Antonio Valenzuela Gutierrez

Levitation of single trapped particles enables the exploration of fundamental physicochemical aerosol properties never previously achieved. Experimental measurements showed that (NH4)2SO4’s particle shape deviated from sphericity during the crystallization process. Despite that, salt aerosols are assumed to be spheres even in low relative humidity (RH) in most climate models. In the analysis performed here, Mie and T-Matrix codes were operated to simulate crucial parameters needed to estimate the radiative forcing efficiency: extinction efficiency, asymmetry parameter and backscattering fraction. The incorporation of non-spherical effects in (NH4)2SO4 particles can cause a difference of up to 46% radiative forcing efficiency compared to the assumption of sphericity in the 0.3–0.6 µm particle radius range.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Junbum Park ◽  
Seongjin Hong ◽  
Yong Soo Lee ◽  
Hyeonwoo Lee ◽  
Seokjin Kim ◽  
...  

AbstractWe report a new method to optically manipulate a single dielectric particle along closed-loop polygonal trajectories by crossing a suite of all-fiber Bessel-like beams within a single water droplet. Exploiting optical radiation pressure, this method demonstrates the circulation of a single polystyrene bead in both a triangular and a rectangle geometry enabling the trapped particle to undergo multiple circulations successfully. The crossing of the Bessel-like beams creates polygonal corners where the trapped particles successfully make abrupt turns with acute angles, which is a novel capability in microfluidics. This offers an optofluidic paradigm for particle transport overcoming turbulences in conventional microfluidic chips.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2021 ◽  
Vol 146 ◽  
pp. 110857
Author(s):  
A.-B.A. Mohamed ◽  
H.A. Hessian ◽  
A.-S.F. Obada

Sign in / Sign up

Export Citation Format

Share Document