liquid reaction
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 43)

H-INDEX

32
(FIVE YEARS 4)

Author(s):  
Qun Luo ◽  
Wei Liu ◽  
Weihao Li ◽  
Qinfen Gu ◽  
Binjun Wang ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 91
Author(s):  
Paulo Bisi dos Santos ◽  
Haroldo Jorge da Silva Ribeiro ◽  
Armando Costa Ferreira ◽  
Caio Campos Ferreira ◽  
Lucas Pinto Bernar ◽  
...  

This work aims to optimize the recovery of methyl methacrylate (MMA) by depolymerization of polymethyl methacrylate (PMMA) dental resins fragments/residues. In order to pilot the experiments at technical scale, the PMMA dental resins scraps were submitted by thermogravimetric analysis (TG/DTG/DTA). The experiments were conducted at 345, 405, and 420 °C, atmospheric pressure, using a pilot scale reactor of 143 L. The liquid phase products obtained at 420 °C, atmospheric pressure, were subjected to fractional distillation using a pilot scale column at 105 °C. The physicochemical properties (density, kinematic viscosity, and refractive index) of reaction liquid products, obtained at 345 °C, atmospheric pressure, were determined experimentally. The compositional analysis of reaction liquid products at 345 °C, 30, 40, 50, 60, 70, 80, and 110 min, at 405 °C, 50, 70, and 130 min, and at 420 °C, 40, 50, 80, 100, 110, and 130 min were determined by GC-MS. The morphology of PMMA dental resins fragments before and after depolymerization was performed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The experiments show that liquid phase yields were 55.50%, 48.73%, and 48.20% (wt.), at 345, 405, and 420 °C, respectively, showing a first order exponential decay behavior, decreasing with increasing temperature, while that of gas phase were 31.69%, 36.60%, and 40.13% (wt.), respectively, showing a first order exponential growth, increasing with temperature. By comparing the density, kinematic viscosity, and refractive index of pure MMA at 20 °C with those of liquid reaction products after distillation, one may compute percent errors of 1.41, 2.83, and 0.14%, respectively. SEM analysis showed that all the polymeric material was carbonized. Oxygenated compounds including esters of carboxylic acids, alcohols, ketones, and aromatics were detected by gas chromatography/mass spectrometry (GC-MS) in the liquid products at 345, 405, and 420 °C, atmosphere pressure. By the depolymerization of PMMA dental resins scraps, concentrations of methyl methacrylate between 83.454 and 98.975% (area.) were achieved. For all the depolymerization experiments, liquid phases with MMA purities above 98% (area.) were obtained between the time interval of 30 and 80 min. However, after 100 min, a sharp decline in the concentrations of methyl methacrylate in the liquid phase was observed. The optimum operating conditions to achieve high MMA concentrations, as well as elevated yields of liquid reaction products were 345 °C and 80 min.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 844
Author(s):  
Mitsuki Ohyama ◽  
Shuntaro Amari ◽  
Hiroshi Takiyama

In the quality control of crystalline particles, the uniformity of the distribution of each characteristic, such as size and shape, is important. In particular, the problem in reaction crystallization is that the comprehensive uniformity of characteristic distributions is frequently reduced by the agglomeration phenomena. In this study, we designed an operation method to improve the comprehensive uniformity in a liquid–liquid reaction crystallization by evaluating the dynamic variation in the uniformity of particle size and crystal shape using homogeneity. The homogeneity of final particles increased when the supersaturation was lowered by intermittent operation with inner seed production. Since the ratios of the uniformities of particle sizes and crystal shapes constituting homogeneity varied dynamically, the intermittent operation was designed by focusing on individual uniformities. The uniformity of particle size for the final particles was increased via modulation operation using reverse addition for the dissolution of the microparticles. In the growth stage after the reverse addition, the uniformity of the shape of the final particles was increased by raising the number of times of adding solution for decreasing the supersaturation. In addition, we proposed suitable addition methods to improve comprehensive uniformity by controlling uniformity constituting homogeneity at each stage of intermittent operation.


Author(s):  
Г. П. Пономарева ◽  
◽  
И. М. Попова ◽  
О. М. Сладков ◽  
М. В. Пономарев ◽  
...  

In our studies we present a multilayer structure consisting of outer layers of two-ply basalt composed of basalt fabric impregnated with an epoxy compound and an inner layer of polyurethane reinforced with basalt, having the same composition, formed in conjugate hexagonal prisms, and forming a cellular framework. The main part describes the technological sequence of obtaining basalt face layers, basalt hexagonal cellular frame, and filling it with a liquid reaction mass of rigid polyurethane system. The formation of a single multilayer composite structure is shown. We also present the results of the experimental research of strength of a laminated composite and its inner layer without facing layers when tested for static bending with concentrated load increasing at a constant rate and compression testing up to 10% of relative deformation. It describes the effect of the size of hexagonal prismatic cells of the frame on the physical and mechanical characteristics of the middle layer. The reduction of the cell size results in the increase of the composite strength. The dependence of the composite density on the size of the cells of the basalt frame has been studied.


Sign in / Sign up

Export Citation Format

Share Document