microwave pyrolysis
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 140)

H-INDEX

46
(FIVE YEARS 9)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122839
Author(s):  
Xin Yi Lim ◽  
Peter Nai Yuh Yek ◽  
Rock Keey Liew ◽  
Meng Choung Chiong ◽  
Wan Adibah Wan Mahari ◽  
...  

2022 ◽  
Vol 303 ◽  
pp. 114240
Author(s):  
Putri Humairah Monashofian Putra ◽  
Shaifulazuar Rozali ◽  
Muhamad Fazly Abdul Patah ◽  
Aida Idris

2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Yu-Fong Huang ◽  
Szu-Ling Chou ◽  
Shang-Lien Lo

AbstractRecycling of waste printed circuit boards (PCBs) has attracted increasing attention because of its high annually produced amount and high content of gold. In this study, gold recovery from waste PCBs was carried out by using the processes including microwave pyrolysis, acid leaching, solvent extraction and oxidative precipitation. The leaching efficiency of copper was approximately 95% when using a lixiviant composed of sulfuric acid and hydrogen peroxide, and the leaching efficiencies of gold were approximately 59, 95 and 95% by using thiourea, thiosulfate and aqua regia, respectively. The gold ions contained in the leachate previously produced by the leaching processes were not satisfactorily extracted by using organic solvents including di-(2-ethylhexyl)phosphoric acid, tributyl phosphate, dibutyl carbitol and trioctylamine, so the leachate was decided to bypass solvent extraction and directly apply to the oxidative precipitation process. By using the oxidants of hydrogen peroxide and perchloric acid, the precipitation efficiencies of gold were approximately 95 and 99%, and the final recovery rates were approximately 90 and 93%, respectively. The high recovery rates of gold can be attributable to the use of microwave pyrolysis that prevents the loss of gold caused by shredding and grinding processes. In addition, perchloric acid can provide higher selectivity for gold recovery than hydrogen peroxide. The maximum processing capacity of microwave pyrolysis of waste PCBs would be approximately 1.23 kg. The gold recovered from 1 t of waste PCBs can be sold for approximately USD 10,000, and thus the return on investment can be as high as approximately 1400%.


Author(s):  
Hang Gao ◽  
Jing Bai ◽  
Yuanxia Wei ◽  
Wencheng Chen ◽  
Lefei Li ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 700
Author(s):  
Kai-Yen Chin ◽  
Angus Shiue ◽  
Yi-Jing Wu ◽  
Shu-Mei Chang ◽  
Yeou-Fong Li ◽  
...  

During the production process of commercial carbon fiber reinforced polymers (CFRPs), a silane coupling agent is added to the carbon fiber at the sizing step as a binder to enhance the product’s physical properties. While improving strength, the silane coupling agent results in a silane residue on recovered carbon fibers (rCF) after recycling, which is a disadvantage when using recovered carbon fibers in the manufacture of new materials. In this study, the rCF is recovered from waste carbon fiber reinforced polymers (CFRPs) from the bicycle industry by a microwave pyrolysis method, applying a short reaction time and in an air atmosphere. Moreover, the rCF are investigated for their surface morphologies and the elements present on the surface. The silicon element content changes with pyrolysis temperature were 0.4, 0.9, and 0.2%, respectively, at 450, 550, and 650 °C. Additionally, at 950 °C, silicon content can be reduced to 0.1 ± 0.05%. The uniformity of microwave pyrolysis recycle treatment was compared with traditional furnace techniques used for bulk waste treatment by applying the same temperature regime. This work provides evidence that microwave pyrolysis can be used as an alternative method for the production of rCFs for reuse applications.


2022 ◽  
Vol 156 ◽  
pp. 106333
Author(s):  
Tayra R. Brazil ◽  
Maraísa Gonçalves ◽  
Mauro S.O. Junior ◽  
Mirabel C. Rezende

Author(s):  
Saysunee Jumrat ◽  
Teerasak Punvichai ◽  
Wichuta Sae-jie ◽  
Seppo Karrila ◽  
Yutthapong Pianroj

Abstract The important parameters characterizing microwave pyrolysis kinetics, namely the activation energy (E a) and the rate constant pre-exponential factor (A), were investigated for oil palm shell mixed with activated carbon and palm oil fuel ash as microwave absorbers, using simple lab-scale equipment. These parameters were estimated for the Kissinger model. The estimates for E a ranged within 31.55–58.04 kJ mol−1 and for A within 6.40E0–6.84E+1 s−1, in good agreement with prior studies that employed standard techniques: Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The E a and A were used with the Arrhenius reaction rate equation, solved by the 4th order Runge-Kutta method. The statistical parameters coefficient of determination (R 2) and root mean square error (RMSE) were used to verify the good fit of simulation to the experimental results. The best fit had R 2 = 0.900 and RMSE = 4.438, respectively, for MW pyrolysis at power 440 W for OPS with AC as MW absorber.


Sign in / Sign up

Export Citation Format

Share Document