bending beam rheometer
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 52
Author(s):  
Xue Xue ◽  
Junfeng Gao ◽  
Jiaqing Wang ◽  
Yujing Chen

This research aims to explore the high-temperature and low-temperature performances of lignin–waste engine oil-modified asphalt binder and its mixture. For this research, the lignin with two contents (4%, 6%) and waste engine oil with two contents (3%, 5%) were adopted to modify the control asphalt binder (PG 58-28). The high-temperature rheological properties of the lignin–waste engine oil-modified asphalt binder were investigated by the viscosity obtained by the Brookfield viscometer and the temperature sweep test by the dynamic shear rheometer. The low-temperature rheological property of the lignin–waste engine oil-modified asphalt binder was evaluated by the stiffness and m-value at two different temperatures (−18 °C, −12 °C) obtained by the bending beam rheometer. The high-temperature and the low-temperature performances of the lignin–waste engine oil-modified asphalt mixture were explored by the rutting test and low-temperature bending beam test. The results displayed that the rotational viscosity and rutting factor improved with the addition of lignin and decreased with the incorporation of waste engine oil. Adding the lignin into the control asphalt binder enhanced the elastic component while adding the waste engine oil lowered the elastic component of the asphalt binder. The stiffness of asphalt binder LO60 could not meet the requirement in the specification, but the waste engine oil made it reach the requirement based on the bending beam rheometer test. The waste engine oil could enhance the low-temperature performance. The dynamic stabilities of LO40- and LO60-modified asphalt mixture increased by about 9.05% and 17.41%, compared to the control mixture, respectively. The maximum tensile strain of LO45 and LO65 increased by 16.39% and 25.28% compared to that of LO40 and LO60, respectively. The high- and low-temperature performances of the lignin–waste engine oil-modified asphalt LO65 was higher than that of the control asphalt. The dynamic stability had a good linear relationship with viscosity, the rutting factor of the unaged at 58 °C, and the rutting factor of the aged at 58 °C, while the maximum tensile strain had a good linear relationship with m-value at −18 °C. This research provides a theoretical basis for the further applications of lignin–waste engine oil-modified asphalt.


2021 ◽  
Vol 11 (18) ◽  
pp. 8579
Author(s):  
Bagdat Teltayev ◽  
Tulegen Seilkhanov ◽  
Cesare Oliviero Rossi ◽  
Yerik Amirbayev ◽  
Sakhypzhamal Begaliyeva

In this paper, a conventional road bitumen with penetration grade 100–130 is compounded with tar in order to obtain bitumen with improved low temperature resistance. The low temperature (at −24 °C, −30 °C and −36 °C) resistance of the virgin bitumen and the compounded one is evaluated by testing on a bending beam rheometer. It was found that the optimum compounding (20% of tar by weight) decreases the stiffness essentially (from 18% to 34%), i.e., it increases the low temperature resistance of the bitumen. The stiffness decreases in the compounded bitumen can be explained by quantitative variations in its group chemical composition and molecular fragments. Group chemical composition has been determined by the method of absorption chromatography, and the fragments of molecules are identified by NMR-spectroscopy.


2021 ◽  
Vol 13 (16) ◽  
pp. 9319
Author(s):  
Hyun Hwan Kim ◽  
Mithil Mazumder ◽  
Moon-Sup Lee ◽  
Soon-Jae Lee

The crumb rubber modified (CRM) binder was evaluated considering the general operating temperatures of high, intermediate, and low temperatures. CRM binders were produced with four different contents (0, 5, 10, and 15%) using the base asphalt binder (PG64-22). Then, they were artificially aged by a rolling thin-film oven (RTFO) and pressure aging vessel (PAV). Superpave binder tests using a rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) was applied to characterize the performance of the original and aged binders. Multiple stress creep recovery (MSCR) tests were also performed for deeper rutting characterization. The results of this study are as follows: (1) the presence of PR increases the binder viscosity, (2) the integration of CRM greatly improved the rutting resistance of the binder, and it was found that PR also improved the rutting characteristics, and (3) it is observed that PR is detrimental to the cracking properties of CRM binders.


Author(s):  
Md Amanul Hasan ◽  
Rafiqul A. Tarefder

This study presents a new mechanistic procedure for determining the critical cracking temperature of asphalt concrete (AC) using data from bending beam rheometer (BBR) test of asphalt binder and indirect tension (IDT) test of AC. This new procedure uses BBR creep data to generate the mixture relaxation modulus mastercurve by utilizing the Hirsch model, time-temperature superposition principle, and Prony series-based interconversion method. The Hirsch model parameters are calibrated by comparing creep data from BBR and IDT creep tests performed at the same temperature. Boltzmann hereditary integral and second-order heat equation are then used to calculate thermal stress from the developed relaxation modulus mastercurve. IDT strength data is transferred from test strain rate to thermal strain rate using the viscoelastic continuum damage model. Since a strain gauge is not attached for traditional laboratory IDT strength testing, this study derived an analytical equation based on the Hondros solution to compute the horizontal strain rate from the applied vertical displacement rate. Finally, the critical cracking temperature is determined by coupling the thermal stress and strength profiles. Using the procedure presented in this paper, the critical cracking temperatures of four AC mixtures were predicted from BBR and IDT data. Their actual critical cracking temperatures were measured using thermal stress restrained specimen test performed in the laboratory to validate the method. The predicted critical cracking temperatures are found to be very close to the laboratory measured values. The developed procedure has substantial practical and technical importance in predicting the critical cracking temperature of AC because it utilizes widely available BBR and IDT tests.


2021 ◽  
Vol 891 ◽  
pp. 190-195
Author(s):  
Li Xing Ma

This paper is to study the mechanism of aging on the Rheological and Chemical Investigation of the bitumen and make correlations with the actual field behavior of the binder. The effects of ageing on rheological properties of asphalt has been studied by Bending Beam Rheometer(BBR). The objective of conducting these tests is to evaluate the performance of the bitumen in an aged and unaged states in relation to the effects of traffic speed and/or pavement temperature, traffic volume (number of load repetitions), and (thermal/load) cracking behavior.


2021 ◽  
Vol 29 (1) ◽  
pp. 27-34
Author(s):  
Baha Vural Kök ◽  
Yunus Erkuş ◽  
Mehmet Yilmaz

Abstract The durability, fatigue resistance, and low-temperature behavior of asphalt layers are greatly affected by the properties of bitumen. Therefore, the composition of bitumen is frequently modified to improve the performance of asphalt mixtures. Sty-rene-butadiene-styrene (SBS) has been the most often used additive recently. Researchers are trying to improve the cohesive and adhesive properties of binders by such polymer-based additives. In this study, 160/220 penetration grade bitumen and Kraton D 1101 SBS were used. The present study contains a new evaluation for determining the cohesive behavior of SBS-modified binders at -1°C, -3°C, and -5°C. The results of this evaluation were compared to conventional and rheological test results. Penetration, softening point, viscosity, dynamic shear rheometer, and bending beam rheometer tests were therefore conducted. Finally, the results of a low-temperature tensile test were found to be consistent with the results of the other tests; hence, they also confirm the cohesive behavior of SBS-modified binders at low temperatures.


Sign in / Sign up

Export Citation Format

Share Document