robust synchronization
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 49)

H-INDEX

38
(FIVE YEARS 7)

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yang Wang ◽  
Zhen Wang ◽  
Lingyun Kong

For synchronization of a class of chaotic systems in the presence of nonvanishing uncertainties, a novel time-varying gain observer-based sliding mode control is proposed. First, a novel time-varying gain disturbance observer (TVGDO) is developed to estimate the uncertainties. Then, by using the output of TVGDO to modify sliding mode control (SMC), a new TVGDO-based SMC scheme is developed. Although the observation and control precision of conventional fixed gain disturbance observer-based control (FGDOC) for chaotic systems can be guaranteed by a high observer gain, the undesirable spike problem may be caused by the high gain if the initial values of estimate and true states are not equal. The most attractive feature of this work is that the newly proposed TVGDO can eliminate the spike problem by developing a time-varying gain scheme. Finally, the effectiveness of the proposed method is demonstrated by the numerical simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chenhui Wang

To enrich the types of multiwing chaotic attractors in fractional-order chaotic systems (FOCSs), a new type of 3-dimensional FOCSs is designed in this study. The most important contribution of this FOCS consists in the coexistence of multiple multiwing chaotic attractors, including 2-wing, 3-wing, and 4-wing attractors. It is also indicated that the minimum order that the system can exhibit chaotic behavior is 0.84. Then, based on certain fractional stability criteria, a robust synchronization controller is derived for this kind of FOCSs with multiwing chaotic attractors and parametric uncertainties, and the stability of the synchronization error is proven strictly. Meanwhile, the theoretical analysis is tested by simulation results.


2021 ◽  
pp. 681-710
Author(s):  
Colin Boyd ◽  
Gareth T. Davies ◽  
Bor de Kock ◽  
Kai Gellert ◽  
Tibor Jager ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document