neuronal tissue
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 48)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Vol 15 ◽  
Author(s):  
Reinier Xander A. Ramos ◽  
Jacqueline C. Dominguez ◽  
Johnrob Y. Bantang

Realistic single-cell neuronal dynamics are typically obtained by solving models that involve solving a set of differential equations similar to the Hodgkin-Huxley (HH) system. However, realistic simulations of neuronal tissue dynamics —especially at the organ level, the brain— can become intractable due to an explosion in the number of equations to be solved simultaneously. Consequently, such efforts of modeling tissue- or organ-level systems require a lot of computational time and the need for large computational resources. Here, we propose to utilize a cellular automata (CA) model as an efficient way of modeling a large number of neurons reducing both the computational time and memory requirement. First, a first-order approximation of the response function of each HH neuron is obtained and used as the response-curve automaton rule. We then considered a system where an external input is in a few cells. We utilize a Moore neighborhood (both totalistic and outer-totalistic rules) for the CA system used. The resulting steady-state dynamics of a two-dimensional (2D) neuronal patch of size 1, 024 × 1, 024 cells can be classified into three classes: (1) Class 0–inactive, (2) Class 1–spiking, and (3) Class 2–oscillatory. We also present results for different quasi-3D configurations starting from the 2D lattice and show that this classification is robust. The numerical modeling approach can find applications in the analysis of neuronal dynamics in mesoscopic scales in the brain (patch or regional). The method is applied to compare the dynamical properties of the young and aged population of neurons. The resulting dynamics of the aged population shows higher average steady-state activity 〈a(t → ∞)〉 than the younger population. The average steady-state activity 〈a(t → ∞)〉 is significantly simplified when the aged population is subjected to external input. The result conforms to the empirical data with aged neurons exhibiting higher firing rates as well as the presence of firing activity for aged neurons stimulated with lower external current.


2021 ◽  
Vol 22 (24) ◽  
pp. 13195
Author(s):  
Jovana Bojcevski ◽  
Changwen Wang ◽  
Haikun Liu ◽  
Amir Abdollahi ◽  
Ivana Dokic

DNA-double strand break (DSB), detected by immunostaining of key proteins orchestrating repair, like γH2AX and 53BP1, is well established as a surrogate for tissue radiosensitivity. We hypothesized that the generation of normal brain 3D organoids (“mini-brains”) from human induced pluripotent stem cells (hiPSC) combined with detection of DNA damage repair (DDR) may hold the promise towards developing personalized models for the determination of normal tissue radiosensitivity. In this study, cerebral organoids, an in vitro model that stands in its complexity between 2D cellular system and an organ, have been used. To quantify radiation-induced response, immunofluorescent staining with γH2AX and 53BP1 were applied at early (30 min, initial damage), and late time points (18 and 72 h, residual damage), following clinical standard 2 Gy irradiation. Based on our findings, assessment of DDR kinetics as a surrogate for radiosensitivity in hiPSC derived cerebral organoids is feasible. Further development of mini-brains recapitulating mature adult neuronal tissue and implementation of additional signaling and toxicity surrogates may pave the way towards development of next-generation personalized assessment of radiosensitivity in healthy neuronal tissue.


2021 ◽  
Vol 22 (23) ◽  
pp. 13101
Author(s):  
Shannon M. Stuckey ◽  
Lin Kooi Ong ◽  
Lyndsey E. Collins-Praino ◽  
Renée J. Turner

Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.


2021 ◽  
Vol 22 (21) ◽  
pp. 11467
Author(s):  
Joshua Kleine ◽  
Sandra Leisz ◽  
Chalid Ghadban ◽  
Tim Hohmann ◽  
Julian Prell ◽  
...  

Based on oxidized regenerated cellulose (ORC), several hemostyptic materials, such as Tabotamp®, Equicel® and Equitamp®, have been developed to approach challenging hemostasis in neurosurgery. The present study compares ORC that differ in terms of compositions and properties, regarding their structure, solubility, pH values and effects on neuronal tissue. Cytotoxicity was detected via DNA-binding fluorescence dye in Schwann cells, astrocytes, and neuronal cells. Additionally, organotypic hippocampal slice cultures (OHSC) were analyzed, using propidium iodide, hematoxylin-eosin, and isolectin B4 staining to investigate the cellular damage, cytoarchitecture, and microglia activation. Whereas Equicel® led to a neutral pH, Tabotamp® (pH 2.8) and Equitamp® (pH 4.8) caused a significant reduction of pH (p < 0.001). Equicel® and Tabotamp® increased cytotoxicity significantly in several cell lines (p < 0.01). On OHSC, Tabotamp® and Equicel® led to a stronger and deeper damage to the neuronal tissue than Equitamp® or gauze (p < 0.01). Equicel® increased strongly the number of microglia cells after 24 h (p < 0.001). Microglia cells were not detectable after Tabotamp® treatment, presumably due to an artifact caused by strong pH reduction. In summary, our data imply the use of Equicel®, Tabotamp® or Equitamp® for specific applications in distinct clinical settings depending on their localization or tissue properties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yeuni Yu ◽  
Soon Ki Sung ◽  
Chi Hyung Lee ◽  
Mihyang Ha ◽  
Junho Kang ◽  
...  

Glioma is the most common primary malignant tumor that occurs in the central nervous system. Gliomas are subdivided according to a combination of microscopic morphological, molecular, and genetic factors. Glioblastoma (GBM) is the most aggressive malignant tumor; however, efficient therapies or specific target molecules for GBM have not been developed. We accessed RNA-seq and clinical data from The Cancer Genome Atlas, the Chinese Glioma Genome Atlas, and the GSE16011 dataset, and identified differentially expressed genes (DEGs) that were common to both GBM and lower-grade glioma (LGG) in three independent cohorts. The biological functions of common DEGs were examined using NetworkAnalyst. To evaluate the prognostic performance of common DEGs, we performed Kaplan-Meier and Cox regression analyses. We investigated the function of SOCS3 in the central nervous system using three GBM cell lines as well as zebrafish embryos. There were 168 upregulated genes and 50 downregulated genes that were commom to both GBM and LGG. Through survival analyses, we found that SOCS3 was the only prognostic gene in all cohorts. Inhibition of SOCS3 using siRNA decreased the proliferation of GBM cell lines. We also found that the zebrafish ortholog, socs3b, was associated with brain development through the regulation of cell proliferation in neuronal tissue. While additional mechanistic studies are necessary, our results suggest that SOCS3 is an important biomarker for glioma and that SOCS3 is related to the proliferation of neuronal tissue.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257152
Author(s):  
Yi-Lin Chen ◽  
Wan-Li Chen ◽  
Yi-Chia Cheng ◽  
Ming-Ching Lin ◽  
Shu-Ching Yang ◽  
...  

Approximately 5–7% of non–small cell lung cancer (NSCLC) cases harbor an anaplastic lymphoma kinase (ALK) fusion gene and may benefit from ALK inhibitor therapy. To detect ALK fusion genes, we developed a novel test using reverse transcription polymerase chain reaction (RT-PCR) for the ALK kinase domain (KD). Since ALK expression is mostly silenced in the adult with the exception of neuronal tissue, the normal lung tissue, mesothelial lining, and inflammatory cells are devoid of ALK transcript, making ALK KD RT-PCR an ideal surrogate test for ALK fusion transcripts in lung or pleural effusion. The test was designed with a short PCR product (197 bp) to work for both malignant pleural effusion (MPE) and formalin-fixed, paraffin-embedded (FFPE) NSCLC samples. Using ALK IHC as a reference, the sensitivity of the test was 100% for both MPE and FFPE. The specificity was 97.6% for MPE and 97.4% for FFPE. Two false positive cases were found. One was a metastatic brain lesion which should be avoided in the future due to intrinsic ALK expression in the neuronal tissue. The other one resulted from ALK gene amplification. Due to potential false positivity, subsequent confirmation tests such as fluorescence in situ hybridization or multiplex PCR would be preferable. Nevertheless, the test is simple and inexpensive with no false negativity, making it a desirable screening test. It also offers an advantage over multiplex RT-PCR with the capability to detect novel ALK fusions. Indeed through the screening test, we found a novel ALK fusion partner (sperm antigen with calponin homology and coiled-coil domains 1 like gene, SPECC1L) with increased sensitivity to crizotinib in vitro. In summary, a novel RNA-based ALK KD analysis was developed for ALK rearrangement screening in MPE and FFPE specimens of NSCLC. This simple inexpensive test can be implemented as routine diagnostics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Congwu Du ◽  
Kicheon Park ◽  
Craig P. Allen ◽  
Xiu-Ti Hu ◽  
Nora D. Volkow ◽  
...  

AbstractCocaine profoundly affects both cerebral blood vessels and neuronal activity in the brain. The vasoconstrictive effects of cocaine, concurrently with its effects on neuronal [Ca2+]i accumulation are likely to jeopardize neuronal tissue that in the prefrontal cortex (PFC) could contribute to impaired self-regulation and compulsive cocaine consumption. Here we used optical imaging to study the cerebrovascular and neuronal effects of acute cocaine (1 mg/kg i.v.) and to examine whether selective blockade of L-type Ca2+ channels by Nifedipine (NIF) (0.5 mg/kg i.v.) would alleviate cocaine’s effects on hemodynamics (measured with cerebral blood volume, HbT), oxygenation (measured with oxygenated hemoglobin, HbO2) and neuronal [Ca2+]i, which were concomitantly measured in the PFC of naive rats. Our results show that in the PFC acute cocaine significantly reduced flow delivery (HbT), increased neuronal [Ca2+]i accumulation and profoundly reduced tissue oxygenation (HbO2) and these effects were significantly attenuated by NIF pretreatment. They also show that cocaine-induced vasoconstriction is distinct from its increase of neuronal [Ca2+]i accumulation though both of them contribute to hypoxemia and both effects were attenuated by NIF. These results provide evidence that blockade of voltage-gated L-type Ca2+ channels might be beneficial in preventing vasoconstriction and neurotoxic effects of cocaine and give support for further clinical investigations to determine their value in reducing cocaine’s neurotoxicity in cocaine use disorders.


Author(s):  
Xiaoming Feng ◽  
Xizhen Hong ◽  
Qiuxia Fan ◽  
Liting Chen ◽  
Jing Li ◽  
...  

Aging is a multi-faceted process regulated by multiple cellular pathways, including the proteostasis network. Pharmacological or genetic enhancement of the intracellular proteostasis network extends lifespan and prevents age-related diseases. However, how proteostasis is regulated in different tissues throughout the aging process remains unclear. Here, we show that Drosophila homologs for Cubulin/Amnionless (dCubilin/dAMN)-mediated protein reabsorption from hemolymph (fly equivalent of blood) by nephrocytes modulates longevity through regulating proteostasis in muscle and brain tissues in Drosophila. We find that overexpression of dAMN receptor in nephrocytes extends lifespan, whereas nephrocyte-specific dCubilin or dAMN RNAi knockdown results in a protein reabsorption defect and shortens lifespan in flies. And we show that dCubilin/dAMN-mediated protein reabsorption in nephrocytes regulates proteostasis in hemolymph and improves healthspan. In addition, we show that enhanced dCubilin/dAMN-mediated protein reabsorption in nephrocytes slows down the aging process in muscle and brain by maintaining the proteostasis network in these tissues. Furthermore, our study shows that dCubilin/dAMN -mediated protein reabsorption in nephrocytes affects proteasome activity in the whole body and muscle tissues. Altogether, our work has revealed an inter-organ communication network across nephrocytes and muscle/neuronal tissue which is essential to maintain proteostasis and to delay senescence in these organs. The findings have provided insights into the role of renal protein reabsorption in the aging process via this tele-proteostasis network.


2021 ◽  
Vol 15 (8) ◽  
pp. 1790-1792
Author(s):  
Madiha Imtiaz ◽  
Tazeen Kohari ◽  
Farah Malik ◽  
Aftab Ahmad

Background: The cerebellum principally the motor organ is involved in the regulation of muscular tone and skilled motor movements. The cerebellar histology consists of three layers and the middle is the Purkinje cell layer which consists of pyramidal shaped purkinje cells. Clinical research shows scanty literature on the beneficial effects of Methylcobalamin on Purkinje cells layer. Aim: Our aim was to bring to light the need for prescribing Methylcobalamin in the masses and patient suffering from motor incoordination. Method: 15 animals were given Methylcobalamin and the changes in the thickness of Purkinje cell layer ware recorded at twelve weeks Result: The morphometric analysis showed restored thickness of Purkinje cell layer Conclusion: The recorded data of the regenerated purinje cell layer thickness proved that the use of Methylcobalamin is mandatory as protective drug in damaged neuronal tissue. Key words: Proliferative, Cytostatic, Purkine cell layer


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Josh D. Hawk ◽  
Elias M. Wisdom ◽  
Titas Sengupta ◽  
Zane D. Kashlan ◽  
Daniel A. Colón-Ramos

AbstractChemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a Hydra-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode Caenorhabditis elegans. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors.


Sign in / Sign up

Export Citation Format

Share Document