infectious disease research
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 42)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Pablo Cárdenas ◽  
Mauricio Santos-Vega

Genomics is fundamentally changing epidemiological research. However, exploring hypotheses about pathogen evolution in different epidemiological contexts poses new challenges. Models intertwining pathogen epidemiology and genomic evolution can help understand processes such as the emergence of novel pathogen genotypes with higher transmission or resistance to treatment. In this work, we present Opqua, a computational framework for flexible simulation of pathogen epidemiology and evolution. We use Opqua to study determinants of evolution across fitness valleys. We confirm that competition can limit evolution in high transmission environments and find that low transmission, host mobility, and complex pathogen life cycles facilitate reaching new adaptive peaks through population bottlenecks and decoupling selective pressures. The results show the potential of genomic epidemiological modeling as a tool in infectious disease research.


mBio ◽  
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
David R. Franz ◽  
James W. Le Duc

The human and economic toll of the coronavirus disease 2019 (COVID-19) pandemic and the unknowns regarding the origins of the virus, with a backdrop of enormous advances in technologies and human understanding of molecular virology, have raised global concerns about the safety of the legitimate infectious disease research enterprise. We acknowledge the safety and security risks resulting from the broad availability of tools and knowledge, tools and knowledge that can be exploited equally for good or harm.


2021 ◽  
Vol 42 ◽  
pp. 154-155
Author(s):  
W-J Metsemakers ◽  
◽  
HC van der Mei ◽  
RG Richards ◽  
TF Moriarty

The orthopaedic and trauma community have faced the threat of infection since the introduction of operative fracture fixation many decades ago. The parallel emergence and spread of antimicrobial resistance in clinically relevant pathogens has the potential to significantly complicate patient care. This editorial serves to provide a global context to the issue of antimicrobial resistance and how infectious disease research in general plays a crucial role both on a global scale as evidenced by the current pandemic, but also on a more personal scale for the daily management of orthopaedic trauma patients. The special issue on Orthopaedic Infection in the eCM journal provides a snapshot of the clinically relevant basic research that is being performed in this field.


Author(s):  
Daniel Yoo ◽  
Kenneth W. Walker

Advances in cancer research have led to the development of new therapeutics with significant and durable responses such as immune checkpoint inhibitors. More recent therapies aim to stimulate anti-tumor immune responses by targeting the tumor necrosis factor (TNF) receptors, however this approach has been shown to require clustering of receptors in order to achieve a significant response. Here we present a perspective on using transthyretin, a naturally occurring serum protein, as a drug delivery platform to enable cross-linking independent clustering of targets. TTR forms a stable homo-tetramer with exposed termini that make TTR a highly versatile platform for generating multimeric antibody fusions to enable enhanced target clustering. Fusions with antibodies or Fabs targeting TRAILR2 were shown to have robust cytotoxic activity in vitro and in vivo in colorectal xenograft models demonstrating that TTR is a highly versatile, stable, therapeutic fusion platform that can be used with antibodies, Fabs and other bioactive fusion partners and has broad applications in oncology and infectious disease research.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Katherine L. Mallory ◽  
Justin A. Taylor ◽  
Xiaoyan Zou ◽  
Ishita N. Waghela ◽  
Cosette G. Schneider ◽  
...  

AbstractHuman malaria affects the vast majority of the world’s population with the Plasmodium falciparum species causing the highest rates of morbidity and mortality. With no licensed vaccine and leading candidates achieving suboptimal protection in the field, the need for an effective immunoprophylactic option continues to motivate the malaria research community to explore alternative technologies. Recent advances in the mRNA discipline have elevated the long-neglected platform to the forefront of infectious disease research. As the immunodominant coat protein of the invasive stage of the malaria parasite, circumsporozoite protein (PfCSP) was selected as the antigen of choice to assess the immunogenic and protective potential of an mRNA malaria vaccine. In mammalian cell transfection experiments, PfCSP mRNA was well expressed and cell associated. In the transition to an in vivo murine model, lipid nanoparticle (LNP) encapsulation was applied to protect and deliver the mRNA to the cell translation machinery and supply adjuvant activity. The immunogenic effect of an array of factors was explored, such as formulation, dose, number, and interval of immunizations. PfCSP mRNA-LNP achieved sterile protection against infection with two P. berghei PfCSP transgenic parasite strains, with mRNA dose and vaccination interval having a greater effect on outcome. This investigation serves as the assessment of pre-erythrocytic malaria, PfCSP mRNA vaccine candidate resulting in sterile protection, with numerous factors affecting protective efficacy, making it a compelling candidate for further investigation.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hee-Gyeong Yi ◽  
Hyeonji Kim ◽  
Junyoung Kwon ◽  
Yeong-Jin Choi ◽  
Jinah Jang ◽  
...  

AbstractRapid development of vaccines and therapeutics is necessary to tackle the emergence of new pathogens and infectious diseases. To speed up the drug discovery process, the conventional development pipeline can be retooled by introducing advanced in vitro models as alternatives to conventional infectious disease models and by employing advanced technology for the production of medicine and cell/drug delivery systems. In this regard, layer-by-layer construction with a 3D bioprinting system or other technologies provides a beneficial method for developing highly biomimetic and reliable in vitro models for infectious disease research. In addition, the high flexibility and versatility of 3D bioprinting offer advantages in the effective production of vaccines, therapeutics, and relevant delivery systems. Herein, we discuss the potential of 3D bioprinting technologies for the control of infectious diseases. We also suggest that 3D bioprinting in infectious disease research and drug development could be a significant platform technology for the rapid and automated production of tissue/organ models and medicines in the near future.


Sign in / Sign up

Export Citation Format

Share Document