infusion device
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
G. Umashankar ◽  
V. Akshya ◽  
Sindu Divakaran ◽  
J. Bethanney Janney ◽  
T. Sudhakar ◽  
...  

Author(s):  
Syaifudin Syaifudin ◽  
Muhammad Ridha Mak’ruf ◽  
Sari Luthfiyah ◽  
Sumber Sumber

In the medical world, patient safety is a top priority. The large number of workloads and the frequency of using the devices in the long run will affect the accuracy and accuracy of the tool. If the flow rate and volume of the syringe pump or infusion pump given to the patient are not controlled (overdose or the fluid flow rate is too high) it can cause hypertension, heart failure or pulmonary edema. Therefore, it is necessary to have a calibration, which is an application activity to determine the correctness of the designation of the measuring instrument or measuring material. The purpose of this research is to make a two channel infusion device analyzer using a photodiode sensor. The contribution of this research is that the system can display three calibration results in one measurement at the same setting and can calibrate 2 tools simultaneously. The design of the module is in the form of an infrared photodiode sensor for reading the flowrate value. This study uses an infrared photodiode sensor for channels 1 and 2 installed in the chamber. This study uses a flow rate formula that is applied to the water level system to obtain 3 calibration results. Infrared photodiode sensor will detect the presence of water flowing in the chamber from an infusion or syringe pump. Then the sensor output will be processed by STM32 and 3 calibration results will be displayed on the 20x4 LCD. This tool has an average error value on channel 1 of 3.50% and on channel 2 of 3.39%. It can be concluded that the whole system can work well, the placement and distance between the infrared photodiodes also affects the sensor readings


Author(s):  
Andjar Pudji Pudji ◽  
Anita Miftahul Maghfiroh ◽  
Nuntachai Thongpance

Infusion devices are the basis for primary health care, that is to provide medicine, nutrition, and hydration to patients. One of the infusion devices is a syringe pump and an infusion pump. This device is very important to assist the volume and flow that enters the patient's body, especially in situations related to neonatology or cancer treatment. Therefore, a comparison tool is needed to see whether the equipment is used or not. The purpose of this research is to make an infusion device analyzer (IDA) design with a flow rate parameter. The contribution of this research is that the tool can calculate the correct value of the flow rate that comes out of the infusion pump and syringe pump. The water released by the infusion pump or syringe pump will be converted into droplets which are then detected by the sensor. This tool uses an infrared sensor and a photodiode. The results obtained by the sensor will come by Arduino nano and code it to the 16x2 Character Liquid Crystal Display (LCD) and can be stored on an SD Card so that it can be analyzed further. In setting the flow rate for the syringe pump of 100 mL / hour, the error value is 3.9, 50 ml / hour 0.02, 20 mL / hour 0.378, 10 mL / hour 0.048, and 5 mL / hour 0.01. The results show that the average error of the syringe pump performance read by the module is 0.87. The results obtained from this study can be implemented for the calibration of the infusion pump and the syringe pump so that it can be determined whether the device is suitable or not


Langmuir ◽  
2021 ◽  
Vol 37 (4) ◽  
pp. 1563-1570
Author(s):  
Sooraj Sreenath ◽  
Ravishankar Suman ◽  
K.V. Sayana ◽  
P.S. Nayanthara ◽  
Nitin G. Borle ◽  
...  

2021 ◽  
Vol 77 (7) ◽  
pp. 726-730
Author(s):  
Takuya Kobata ◽  
Yukito Maeda ◽  
Masatoshi Morimoto ◽  
Akihiro Oishi ◽  
Keisuke Matsumoto ◽  
...  
Keyword(s):  
Fdg Pet ◽  

Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 761
Author(s):  
Shanthy Sriskandarajah ◽  
Brett Ritchie ◽  
Janet K. Sluggett ◽  
Jodie G. Hobbs and Karen J. Reynolds

This study aimed to compare and contrast the safety and efficacy of nurse- and self-administered paediatric outpatient parenteral antimicrobial therapy (OPAT) models of care and to identify clinical factors associated with documented adverse events (AEs). A total of 100 OPAT episodes among children aged between 1 month and 18 years who were discharged from hospital and who received continuous 24 h intravenous antimicrobial therapy at home via an elastomeric infusion device were included. All documented AEs from the case notes were reviewed by a paediatrician and classified as either major or minor. Multivariable logistic regression was used to determine associations between clinical factors and any AE. A total of 86 patients received 100 treatment OPAT episodes (49 self-administered, 51 nurse administered). The most commonly prescribed antimicrobial via continuous infusion was ceftazidime (25 episodes). Overall, an AE was recorded for 27 (27%) OPAT episodes. Major AEs was recorded for 15 episodes and minor AEs were reported in 14 episodes. The odds of an AE was increased in episodes with self-administration (adjusted odds ratio (aOR) 6.25, 95% confidence interval (CI) 1.44–27.15) and where the duration of vascular access was >14 days (aOR 1.08, 95%CI 1.01–1.15). Our findings suggest minor AEs may be more frequently reported when intravenous antimicrobials are self-administered via 24 h continuous infusions.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S108-S108
Author(s):  
Cynthia Yamaga ◽  
David L Bostick ◽  
Ying P Tabak ◽  
Ann Liu-Ferrara ◽  
Didier Morel ◽  
...  

Abstract Background Automated infusion devices captures actual infused medication administration data in real-time. Vancomycin use is now recommended to be driven by AUC (area under the curve) dosing. We evaluated automated infusion device data to depict vancomycin administration practices in acute care hospitals. Figure 1. Distribution of vancomycin infusion dosing Figure 2. Distribution of time intervals between each vancomycin infusion session (mostly around 8 or 12 hours) Methods We analyzed archived vancomycin infusion data from 2,417 patients captured by automated infusion systems from 3 acute care hospitals. The infusion device informatics software recorded a variety of events during infusion – starting and stopping times, alarms and alerts, vancomycin dose, and other forms of timestamped usage information. We evaluated infusion session duration and dosing, using data-driven clustering algorithms. Results A total of 13,339 vancomycin infusion sessions from 2,417 unique adult patients were analyzed. Approximately 26.1% of patients had just one infusion of vancomycin. For the rest of the patients, the median number of infusion sessions per patient was 4; the interquartile range was 3 and 8. The most common dose was 1.0 gram (53.7%) or 1.5 gram (24.6%) (see Figure 1). The distribution of infusion session duration (hours) was 4.2% (≤1.0 hh); 40.1% (1.01–1.5 hh); 29.1% (1.51–2.0 hh); and 26.6% (>2.0 hh). The dosing frequency was 39.5% (q8 hh), 42.9% (q12 hh), 11.1% (q24 hh), and 6.5% (>q24 hh) (Figure 2), demonstrating clinical interpretability. Conclusion A considerable number of patients received just one vancomycin infusion during their hospital stay, suggesting a potential overuse of empiric vancomycin. The majority of infusion doses were between 1 to 1.5 grams and most infusion sessions were administered every 8 or 12 hours. The actual infusion duration for each dose often exceeds the prescribed 1- or 2-hour infusion orders, which may be due to known instances of infusion interruptions due to patient movement, procedures or IV access compromise. The data generated by infusion devices can augment insights on actual antimicrobial administration practices and duration. As vancomycin AUC dosing becomes more prevalent, real world infusion data may aid timely data-driven antimicrobial stewardship and patient safety interventions for vancomycin and other AUC dosed drugs. Disclosures Cynthia Yamaga, PharmD, BD (Employee) David L. Bostick, PhD, Becton, Dickinson and Co. (Employee) Ying P. Tabak, PhD, Becton, Dickinson and Co. (Employee) Ann Liu-Ferrara, PhD, Becton, Dickinson and Co. (Employee) Didier Morel, PhD, Becton, Dickinson and Co. (Employee) Kalvin Yu, MD, Becton, Dickinson and Company (Employee)GlaxoSmithKline plc. (Other Financial or Material Support, Funding)


Author(s):  
Nikmatul Jannah ◽  
Syaifudin Syaifudin ◽  
Liliek Soetjiatie ◽  
Muhammad Irfan Ali

In the medical world, patient safety is a top priority. The number of workloads and frequency of use in the long term will affect the accuracy and precision of the equipment, therefore calibration is needed, namely the measurement activities to determine the truth of the appointment value of measuring instruments and/or measuring materials based on the standards of the Minister of Health Regulation No. 54/2015. The purpose of this study is to make the design of the Infusion Device Analyzer on flow rate parameters. The main advantage of this study is that the system can display three calibration results in one measurement at the same setting. The results of the calibration will determine the feasibility of an infusion pump or a syringe pump. This study uses the flow rate formula which is applied to the water level system to obtain the calibration results. The infrared photodiode sensor will detect the flow of water in the chamber that comes from the infusion or syringe pump. Furthermore, the sensor output will be processed by the microcontroller and the reading results are displayed on the liquid crystal display. The average measurement at a setting of 10 ml/hour is 9.36 ml/hour, at a setting of 50 ml/hour is 46.64 ml/hour and at a setting of 100 ml/hour is 96.04 ml/hour. Based on available data, this tool has an average error value of 5.69%, where the value exceeds the tolerance limit allowed by ECRI, which is ± 5%.


Sign in / Sign up

Export Citation Format

Share Document