homoserine lactones
Recently Published Documents


TOTAL DOCUMENTS

399
(FIVE YEARS 92)

H-INDEX

55
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Christina C. Roggatz ◽  
Daniel R Parsons

Marine biofilms are functional communities that shape habitats by providing a range of structural and functional services integral to coastal ecosystems. Impacts of climate change on biological aspects of such communities are increasingly studied, but impacts on the chemicals that mediate key interactions of biofilm organisms have largely been overlooked. Acyl-homoserine lactones (AHLs), crucial bacterial signals within biofilms, are known to degrade through pH and temperature-dependent hydrolysis. However, the impact of climate change on AHLs and thus on biofilm form and function is presently unknown. This study investigates the impact of changes in pH and temperature on the hydrolysis rate, half-life time and quantitative abundance of different AHLs on daily and seasonal timescales for current conditions and future climate change scenarios. We established the mathematical relationships between pH, hydrolysis rates/half-life times and temperature, which revealed that natural daily pH-driven changes within biofilms cause the greatest fluctuations in AHL concentration (up to 9-fold). Season-dependant temperature enhanced or reduced the observed daily dynamics, leading to higher winter and lower summer concentrations and caused a shift in timing of the highest and lowest AHL concentration by up to two hours. Simulated future conditions based on climate change projections caused an overall reduction of AHL degradation and led to higher AHL concentrations persisting for longer across both the daily and seasonal cycles. This study provides valuable quantitative insights into the theoretical natural dynamics of AHL concentrations. We highlight critical knowledge gaps on the scale of abiotic daily and seasonal fluctuations affecting estuarine and coastal biofilms and on the biofilms' buffering capacity. Detailed experimental studies of daily and seasonal dynamics of AHL concentrations and assessment of the potential implications for a suite of more complex interactions are required. Substantial fluctuations like those we show in this study, particularly with regards to concentration and timing, will likely have far reaching implications for fundamental ecosystem processes and important ecosystem services such as larval settlement and coastal sediment stabilisation.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3088
Author(s):  
Laura Quintieri ◽  
Leonardo Caputo ◽  
Milena Brasca ◽  
Francesca Fanelli

Food spoilage is a serious issue dramatically impacting the worldwide need to counteract food insecurity. Despite the very expensive application of low temperatures, the proper conservation of fresh dairy products is continuously threatened at different stages of production and commercialization by psychrotrophic populations mainly belonging to the Pseudomonas genus. These bacteria cause discolouration, loss of structure, and off-flavours, with fatal implications on the quality and shelf-life of products. While the effects of pseudomonad decay have been widely reported, the mechanisms responsible for the activation and regulation of spoilage pathways are still poorly explored. Recently, molecule signals and regulators involved in quorum sensing (QS), such as homoserine lactones, the luxR/luxI system, hdtS, and psoR, have been detected in spoiled products and bacterial spoiler species; this evidence suggests the role of bacterial cross talk in dairy spoilage and paves the way towards the search for novel preservation strategies based on QS inhibition. The aim of this review was to investigate the advancements achieved by the application of omic approaches in deciphering the molecular mechanisms controlled by QS systems in pseudomonads, by focusing on the regulators and metabolic pathways responsible for spoilage of fresh dairy products. In addition, due the ability of pseudomonads to quickly spread in the environment as biofilm communities, which may also include pathogenic and multidrug-resistant (MDR) species, the risk derived from the gaps in clearly defined and regulated sanitization actions is underlined.


2021 ◽  
Author(s):  
Abhishek Shrestha ◽  
Casandra Hernandez-Reyes ◽  
Maja Grimm ◽  
Johannes Krumwiede ◽  
Elke Stein ◽  
...  

Quorum sensing (QS) molecules mediate communication between bacterial cells. N-acyl homoserine lactones (AHL) are one of the best-studied groups of QS molecules. In addition to bacterial communication, AHL are involved in interactions with eukaryotes. Short side-chain AHL are readily taken up by plants. They induce root elongation and growth promotion. Hydrophobic long side-chain AHL are usually not transported over long distances although, they may prime plants for enhanced resistance. Unfortunately, studies elucidating the plant factors required for response to AHL are sparse. Here, we provide evidence of a plant protein, namely the AHL-priming protein 1 (ALI1), indispensable for enhanced resistance response induced by the N-3-oxotetradecanoyl-homoserine lactone (oxo-C14-HSL). Comparing Col-0 and the ali1 mutant, we revealed loss of AHL-priming in ali1. This phenomenon is reverted with the reintroduction of ALI1 into ali1. Additional transcriptome analysis revealed that ali1 is less sensitive to oxo-C14-HSL treatment compared to the wild-type. Our results suggest, therefore, that ALI1 is required for oxo-C14-HSL-dependent priming for enhanced resistance in Arabidopsis.


Author(s):  
Sahana Vasudevan ◽  
Parthasarathy Srinivasan ◽  
Prasanna Neelakantan ◽  
John Bosco Balaguru Rayappan ◽  
Adline Princy Solomon

Currently available diagnostic procedures for infections are laborious and time-consuming, resulting in a substantial financial burden by increasing morbidity, increased costs of hospitalization, and mortality. Therefore, innovative approaches to design diagnostic biomarkers are imperative to assist in the rapid and sensitive diagnosis of microbial infections. Acyl homoserine lactones (AHLs) are ubiquitous bacterial signaling molecules that are found to be significantly upregulated in infected sites. In this pioneering work, we have developed a simple photoluminescence-based assay using cysteamine-capped titanium oxide (TiO2) nanoparticles for AHL detection. The PL intensity variation of the oxygen defect state of TiO2 was used for the biosensing measurements. The bioassays were validated using two well-studied AHL molecules (C4-HSL and 3-oxo-C12 HSL) of an important human pathogen, Pseudomonas aeruginosa. The developed system has a maximum relative response of 98%. Furthermore, the efficacy of the system in simulated host urine using an artificial urine medium showed a linear detection range of 10–160 nM. Also, we confirmed the relative response and specificity of the system in detecting AHLs produced by P. aeruginosa in a temporal manner.


2021 ◽  
Vol 2 ◽  
Author(s):  
Rafael Jose Vivero-Gomez ◽  
Gustavo Bedoya Mesa ◽  
Jorge Higuita-Castro ◽  
Sara M. Robledo ◽  
Claudia X. Moreno-Herrera ◽  
...  

Gram-negative bacteria are known to use a quorum sensing system to facilitate and stimulate cell to cell communication, mediated via regulation of specific genes. This system is further involved in the modulation of cell density and metabolic and physiological processes that putatively either affect the survival of insect vectors or the establishment of pathogens transmitted by them. The process of quorum sensing generally involves N-acyl homoserine lactones and 2-alkyl-4-quinolones signaling molecules. The present study aimed to detect and identify quorum sensing signaling molecules of AHLs and AHQs type that are secreted by intestinal bacteria, and link their production to their extracellular milieu and intracellular content. Isolates for assessment were obtained from the intestinal tract of Pintomyia evansi (Leishmania insect vector). AHLs and AHQs molecules were detected using chromatography (TLC) assays, with the aid of specific and sensitive biosensors. For identity confirmation, ultra-high-performance liquid chromatography coupled with mass spectrometry was used. TLC assays detected quorum sensing molecules (QSM) in the supernatant of the bacterial isolates and intracellular content. Interestingly, Pseudomonas otitidis, Enterobacter aerogenes, Enterobacter cloacae, and Pantoea ananatis isolates showed a migration pattern similar to the synthetic molecule 3-oxo-C6-HSL (OHHL), which was used as a control. Enterobacter cancerogenus secreted C6-HSL, a related molecules to N-hexanoyl homoserine lactone (HHL), while Acinetobacter gyllenbergii exhibited a migration pattern similar to 2-heptyl-4-quinolone (HHQ) molecules. In comparison to this, 3-oxo-C12-HSL (OdDHL) type molecules were produced by Lysobacter soli, Pseudomonas putida, A. gyllenbergii, Acinetobacter calcoaceticus, and Pseudomonas aeruginosa, while Enterobacter cloacae produced molecules similar to 2-heptyl-3-hydroxy-4-quinolone (PQS). For Pseudomonas putida, Enterobacter aerogenes, P. ananatis, and Pseudomonas otitidis extracts, peak chromatograms with distinct retention times and areas, consistent with the molecules described in case of TLC, were obtained using HPLC. Importantly, P. ananatis produced a greater variety of high QSM concentration, and thus served as a reference for confirmation and identification by UHPLC-MRM-MS/MS. The molecules that were identified included N-hexanoyl-L-homoserine lactone [HHL, C10H18NO3, (M + H)], N-(3-oxohexanoyl)-L-homoserine lactone [OHHL, C10H16NO4, (M + H)], N-(3-oxododecanoyl)-L-homoserine lactone [OdDHL, C16H28NO4, (M + H)], and 2-heptyl-3-hydroxy-4(1H)-quinolone [PQS, C16H22NO2, (M + H)]. Besides this, the detection of diketopiperazines, namely L-Pro-L-Tyr and ΔAla-L-Val cyclopeptides was reported for P. ananatis. These molecules might be potentially associated with the regulation of QSM system, and might represent another small molecule-mediated bacterial sensing system. This study presents the first report regarding the detection and identification of QSM and diketopiperazines in the gut sand fly bacteria. The possible effect of QSM on the establishment of Leishmania must be explored to determine its role in the modulation of intestinal microbiome and the life cycle of Pi. evansi.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Weijia He ◽  
Huamei Yang ◽  
Xiang Wang ◽  
Hongmei Li ◽  
Qingli Dong

Abstract Quorum sensing (QS) can exist in food-related bacteria and potentially affect bacterial growth through acyl-homoserine lactones (AHLs). To verify the role of QS compounds in the cell-free supernatant, this study examined the effect of supernatant extracted from Pseudomonas aeruginosa culture on the growth kinetics of Salmonella Enteritidis. The results showed that the lag time (λ) of S. Enteritidis was apparently reduced (p < 0.05) under the influence of P. aeruginosa culture supernatant compared with the S. Enteritidis culture supernatant. HPLC-MS/MS test demonstrated that AHLs secreted by P. aeruginosa were mainly C14-HSL with a content of 85.71 μg/mL and a small amount of 3-oxo-C12-HSL. In addition, the commercially synthetic C14-HSL had positive effects on the growth of S. Enteritidis, confirming once again that the growth of S. Enteritidis was affected by AHL metabolized by other bacteria and the complexity of bacterial communication.


Sign in / Sign up

Export Citation Format

Share Document