subcellular organelle
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 23 (2) ◽  
pp. 828
Author(s):  
Hakim Manghwar ◽  
Jianming Li

Plants are sensitive to a variety of stresses that cause various diseases throughout their life cycle. However, they have the ability to cope with these stresses using different defense mechanisms. The endoplasmic reticulum (ER) is an important subcellular organelle, primarily recognized as a checkpoint for protein folding. It plays an essential role in ensuring the proper folding and maturation of newly secreted and transmembrane proteins. Different processes are activated when around one-third of newly synthesized proteins enter the ER in the eukaryote cells, such as glycosylation, folding, and/or the assembling of these proteins into protein complexes. However, protein folding in the ER is an error-prone process whereby various stresses easily interfere, leading to the accumulation of unfolded/misfolded proteins and causing ER stress. The unfolded protein response (UPR) is a process that involves sensing ER stress. Many strategies have been developed to reduce ER stress, such as UPR, ER-associated degradation (ERAD), and autophagy. Here, we discuss the ER, ER stress, UPR signaling and various strategies for reducing ER stress in plants. In addition, the UPR signaling in plant development and different stresses have been discussed.


2021 ◽  
pp. 459-478
Author(s):  
Ketki Bhise ◽  
Katyayani Tatiparti ◽  
Somrita Dey ◽  
Kushal Vanamala ◽  
Ayatakshi Barari ◽  
...  

Author(s):  
Tingting Hu ◽  
Zhou Qin ◽  
Chao Shen ◽  
Han-Lin Gong ◽  
Zhi-Yao He

Mitochondria, a kind of subcellular organelle, play crucial roles in cancer cells as an energy source and as a generator of reactive substrates, which concern the generation, proliferation, drug resistance, and other functions of cancer. Therefore, precise delivery of anticancer agents to mitochondria can be a novel strategy for enhanced cancer treatment. Mitochondria have a four-layer structure with a high negative potential, which thereby prevents many molecules from reaching the mitochondria. Luckily, the advances in nanosystems have provided enormous hope to overcome this challenge. These nanosystems include liposomes, nanoparticles, and nanomicelles. Here, we summarize the very latest developments in mitochondria-targeting nanomedicines in cancer treatment as well as focus on designing multifunctional mitochondria-targeting nanosystems based on the latest nanotechnology.


2021 ◽  
pp. 2101572
Author(s):  
Wenyao Zhen ◽  
Shangjie An ◽  
Shuqi Wang ◽  
Wenxue Hu ◽  
Yujie Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hannah T. Perkins ◽  
Victoria J. Allan ◽  
Thomas A. Waigh

AbstractThe endoplasmic reticulum (ER) is a eukaryotic subcellular organelle composed of tubules and sheet-like areas of membrane connected at junctions. The tubule network is highly dynamic and undergoes rapid and continual rearrangement. There are currently few tools to evaluate network organisation and dynamics. We quantified ER network organisation in Vero and MRC5 cells, and developed an analysis workflow for dynamics of established tubules in live cells. The persistence length, tubule length, junction coordination number and angles of the network were quantified. Hallmarks of imbalances in ER tension, indications of interactions with microtubules and other subcellular organelles, and active dynamics were observed. Clear differences in dynamic behaviour were observed for established tubules at different positions within the cell using itemset mining. We found that tubules with activity-driven fluctuations were more likely to be located away from the cell periphery and a population of peripheral tubules with no signs of active motion was found.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruijuan Qi ◽  
Yuan Kang ◽  
Ximeng Li ◽  
Xiaoyu Zhang ◽  
Yixin Han ◽  
...  

Mast cells (MCs) activated via IgE/FcεRI or MAS-related G protein coupled receptor (Mrgpr)-mediated pathway can release granules that play prominent roles in hypersensitivity reactions. Forsythiae Fructus, a well-known traditional Chinese medicine, has been clinically used for allergic diseases. Although previous studies indicated that Forsythiae Fructus extract inhibited compound 48/80-induced histamine release from MCs, its effect on IgE-dependent MC degranulation and possible underlying mechanisms remain to be explored. Herein, we prepared the forsythiasides-rich extract (FRE) and investigated its action on MC degranulation and explored its underlying mechanism. Our data showed that FRE could dampen IgE/FcεRI- and Mrgpr-mediated MC degranulation in vitro and in vivo. Mechanism study indicated that FRE decreased cytosolic Ca2+ (Ca2+[c]) level rapidly and reversibly. Moreover, FRE decreased Ca2+[c] of MCs independent of plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). While, along with Ca2+[c] decrease, the increase of mitochondrial Ca2+ (Ca2+[m]) occurred simultaneously in FRE-treated RBL-2H3 cells. In the isolated mitochondria, FRE also promoted the subcellular organelle to uptake more extramitochondrial Ca2+. In conclusion, by increasing Ca2+[m] uptake, FRE decreases Ca2+[c] level to suppress MC degranulation. Our findings may provide theoretical support for the clinical application of Forsythiae Fructus on allergy and other MC-involved diseases.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gurcan Gunaydin ◽  
M. Emre Gedik ◽  
Seylan Ayan

Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.


Sign in / Sign up

Export Citation Format

Share Document