fixed energy
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 37)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Chjan C. Lim

An equilibrium statistical mechanics theory for the Hasegawa–Mima equations of toroidal plasmas, with canonical constraint on energy and microcanonical constraint on potential enstrophy, is solved exactly as a spherical model. The use of a canonical energy constraint instead of a fixed-energy microcanonical approach is justified by the preference for viewing real plasmas as an open system. A significant consequence of the results obtained from the partition function, free energy and critical temperature, is the condensation into a ground state exhibiting a blob-hole-like structure observed in real plasmas.


2021 ◽  
Vol 288 (1956) ◽  
pp. 20210677
Author(s):  
Brett R. Aiello ◽  
Milton Tan ◽  
Usama Bin Sikandar ◽  
Alexis J. Alvey ◽  
Burhanuddin Bhinderwala ◽  
...  

The evolution of flapping flight is linked to the prolific success of insects. Across Insecta, wing morphology diversified, strongly impacting aerodynamic performance. In the presence of ecological opportunity, discrete adaptive shifts and early bursts are two processes hypothesized to give rise to exceptional morphological diversification. Here, we use the sister-families Sphingidae and Saturniidae to answer how the evolution of aerodynamically important traits is linked to clade divergence and through what process(es) these traits evolve. Many agile Sphingidae evolved hover feeding behaviours, while adult Saturniidae lack functional mouth parts and rely on a fixed energy budget as adults. We find that Sphingidae underwent an adaptive shift in wing morphology coincident with life history and behaviour divergence, evolving small high aspect ratio wings advantageous for power reduction that can be moved at high frequencies, beneficial for flight control. By contrast, Saturniidae, which do not feed as adults, evolved large wings and morphology which surprisingly does not reduce aerodynamic power, but could contribute to their erratic flight behaviour, aiding in predator avoidance. We suggest that after the evolution of flapping flight, diversification of wing morphology can be potentiated by adaptative shifts, shaping the diversity of wing morphology across insects.


2021 ◽  
Author(s):  
Zhi-Yang Liu ◽  
Qiu-Gang Zong ◽  
Michel Blanc

<p>Jupiter's magnetosphere contains a current sheet of huge size near its equator. The current sheet not only mediates the global mass and energy cycles of Jupiter's magnetosphere, but also provides an occurring place for many localized dynamic processes, such as reconnection and wave-particle interaction. To correctly evaluate its role in these processes, a statistical description of the current sheet is required. To this end, here we conduct statistics on Jupiter's current sheet, with four-year Juno data recorded in the 20-100 Jupiter radii, post-midnight magnetosphere. The results suggest a thin current sheet whose thickness is comparable with the gyro-radius of dominant ions. Magnetic fields in the current sheet decrease in power-law with increasing radial distances. At fixed energy, the flux of electrons and protons increases with decreasing radial distances. On the other hand, at fixed radial distances, the flux decreases in power-law with increasing energy. The flux also varies with the distances to the current sheet center. The corresponding relationship can be well described by Gaussian functions peaking at the current sheet center. In addition, the statistics show the flux of oxygen- and sulfur-group ions is comparable with the flux of protons at the same energy and radial distances, indicating the non-negligible effects of heavy ions on current sheet dynamics. From these results, a statistical model of Jupiter's current sheet is constructed, which provides us with a start point of understanding the dynamics of the whole Jupiter's magnetosphere.</p>


2021 ◽  
Author(s):  
Brett Ronald Aiello ◽  
Milton Tan ◽  
Usama Bin Sikandar ◽  
Alexis J Alvey ◽  
Burhanuddin Bhinderwala ◽  
...  

The evolution of flapping flight is linked to the prolific success of insects. Across Insecta, wing morphology diversified, strongly impacting aerodynamic performance. In the presence of ecological opportunity, discrete adaptive shifts and early bursts are two processes hypothesized to give rise to exceptional morphological diversification. Here, we use the sister-families Sphingidae and Saturniidae to answer how the evolution of aerodynamically important traits is linked to clade divergence and through what process(es) these traits evolve. Many agile Sphingidae evolved hover-feeding behaviors, while adult Saturniidae lack functional mouth parts and rely on a fixed energy budget as adults. We find that Sphingidae underwent an adaptive shift in wing morphology coincident with life history and behavior divergence, evolving small high aspect-ratio wings advantageous for power reduction that can be moved at high frequencies, beneficial for flight control. In contrast, Saturniidae, which do not feed as adults, evolved large wings and morphology which surprisingly does not reduce aerodynamic power, but could contribute to their erratic flight behavior, aiding in predator avoidance. We suggest that after the evolution of flapping flight, diversification of wing morphology can be potentiated by adaptative shifts, shaping the diversity of wing morphology across insects.


Sign in / Sign up

Export Citation Format

Share Document