postcentral gyrus
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 57)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 15 ◽  
Author(s):  
Leehyun Yoon ◽  
Angelica F. Carranza ◽  
Johnna R. Swartz

Although adolescence is a period in which developmental changes occur in brain connectivity, personality formation, and peer interaction, few studies have examined the neural correlates of personality dimensions related to social behavior within adolescent samples. The current study aims to investigate whether adolescents’ brain functional connectivity is associated with extraversion and agreeableness, personality dimensions linked to peer acceptance, social network size, and friendship quality. Considering sex-variant neural maturation in adolescence, we also examined sex-specific associations between personality and functional connectivity. Using resting-state functional magnetic resonance imaging (fMRI) data from a community sample of 70 adolescents aged 12–15, we examined associations between self-reported extraversion and agreeableness and seed-to-whole brain connectivity with the amygdala as a seed region of interest. Then, using 415 brain regions that correspond to 8 major brain networks and subcortex, we explored neural connectivity within brain networks and across the whole-brain. We conducted group-level multiple regression analyses with the regressors of extraversion, agreeableness, and their interactions with sex. Results demonstrated that amygdala connectivity with the postcentral gyrus, middle temporal gyrus, and the temporal pole is positively associated with extraversion in girls and negatively associated with extraversion in boys. Agreeableness was positively associated with amygdala connectivity with the middle occipital cortex and superior parietal cortex, in the same direction for boys and girls. Results of the whole-brain connectivity analysis revealed that the connectivity of the postcentral gyrus, located in the dorsal attention network, with regions in default mode network (DMN), salience/ventral attention network, and control network (CON) was associated with extraversion, with most connections showing positive associations in girls and negative associations in boys. For agreeableness, results of the within-network connectivity analysis showed that connections within the limbic network were positively associated with agreeableness in boys while negatively associated with or not associated with agreeableness in girls. Results suggest that intrinsic functional connectivity may contribute to adolescents’ individual differences in extraversion and agreeableness and highlights sex-specific neural connectivity patterns associated with the two personality dimensions. This study deepens our understanding of the neurobiological correlates of adolescent personality that may lead to different developmental trajectories of social experience.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fuping Sun ◽  
Zhening Liu ◽  
Jun Yang ◽  
Zebin Fan ◽  
Jie Yang

Background: Bipolar depression (BD) and unipolar depression (UD) are both characterized by depressive moods, which are difficult to distinguish in clinical practice. Human brain activity is time-varying and dynamic. Investigating dynamical pattern alterations of depressed brains can provide deep insights into the pathophysiological features of depression. This study aimed to explore similar and different abnormal dynamic patterns between BD and UD.Methods: Brain resting-state functional magnetic resonance imaging data were acquired from 36 patients with BD type I (BD-I), 38 patients with UD, and 42 healthy controls (HCs). Analysis of covariance was adopted to examine the differential pattern of the dynamical regional homogeneity (dReHo) temporal variability across 3 groups, with gender, age, and education level as covariates. Post-hoc analyses were employed to obtain the different dynamic characteristics between any 2 groups. We further applied the machine-learning methods to classify BD-I from UD by using the detected distinct dReHo pattern.Results: Compared with patients with UD, patients with BD-I demonstrated decreased dReHo variability in the right postcentral gyrus and right parahippocampal gyrus. By using the dReHo variability pattern of these two regions as features, we achieved the 91.89% accuracy and 0.92 area under curve in classifying BD-I from UD. Relative to HCs, patients with UD showed increased dReHo variability in the right postcentral gyrus, while there were no dReHo variability differences in patients with BD-I.Conclusions: The results of this study mainly report the differential dynamic pattern of the regional activity between BD-I and UD, particular in the mesolimbic system, and show its promising potential in assisting the diagnosis of these two depression groups.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chenyang Yao ◽  
Na Hu ◽  
Hengyi Cao ◽  
Biqiu Tang ◽  
Wenjing Zhang ◽  
...  

Background: Antipsychotic medications provide limited long-term benefit to ~30% of schizophrenia patients. Multimodal magnetic resonance imaging (MRI) data have been used to investigate brain features between responders and nonresponders to antipsychotic treatment; however, these analytical techniques are unable to weigh the interrelationships between modalities. Here, we used multiset canonical correlation and joint independent component analysis (mCCA + jICA) to fuse MRI data to examine the shared and specific multimodal features between the patients and healthy controls (HCs) and between the responders and non-responders.Method: Resting-state functional and structural MRI data were collected from 55 patients with drug-naïve first-episode schizophrenia (FES) and demographically matched HCs. Based on the decrease in Positive and Negative Syndrome Scale scores from baseline to the 1-year follow-up, FES patients were divided into a responder group (RG) and a non-responder group (NRG). Gray matter volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) maps were used as features in mCCA + jICA.Results: Between FES patients and HCs, there were three modality-specific discriminative independent components (ICs) showing the difference in mixing coefficients (GMV-IC7, GMV-IC8, and fALFF-IC5). The fusion analysis indicated one modality-shared IC (GMV-IC2 and ReHo-IC2) and three modality-specific ICs (GMV-IC1, GMV-IC3, and GMV-IC6) between the RG and NRG. The right postcentral gyrus showed a significant difference in GMV features between FES patients and HCs and modality-shared features (GMV and ReHo) between responders and nonresponders. The modality-shared component findings were highlighted by GMV, mainly in the bilateral temporal gyrus and the right cerebellum associated with ReHo in the right postcentral gyrus.Conclusions: This study suggests that joint anatomical and functional features of the cortices may reflect an early pathophysiological mechanism that is related to a 1-year treatment response.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 830-831
Author(s):  
Anar Amgalan ◽  
Alexander Mayer ◽  
Michelle Ha ◽  
Andrei Irimia

Abstract The extent to which brain functional correlations (FCs) are modulated by age and sex is unknown. We studied default mode network (DMN) FC changes in 136 participants with mild traumatic brain injury (mTBI; 52 females, age range: 19 – 79 years, age μ = 42, age σ = 17; 72 participants younger than 40). Structural and functional magnetic resonance images (MRIs) were acquired ~1 week and ~6 months post-injury; the FreeSurfer Functional Analysis STream (FS-FAST) was used for group-level FC comparisons across sexes and age groups (younger vs. older than 40). FC seeds were two sub-networks of the DMN, M1 and M2, defined by the standard Yeo parcellation scheme. For M1, clusters with significant FC differences across sexes were in the right paracentral lobule, central sulcus, postcentral gyrus, superior frontal gyrus, and precentral sulcus (p = 0.0001), and in the left paracentral lobule and central sulcus (p = 0.022). For M2, clusters spanned the right postcentral gyrus, middle occipital gyrus, transverse occipital sulcus, and central sulcus (p = 0.0001), the left precuneus and inferior parietal lobe (p = 0.0096). Females either exhibited no significant FC change or underwent FC increases. Males underwent significant FC decreases within all clusters, suggesting their increased vulnerability to mTBI-related effects. Clusters whose FCs differed significantly across age groups were localized to the left superior temporal gyrus (p = 0.0078), highlighting the vulnerability of temporal regions to age effects. Future studies should explore the age × sex interaction and uncover the mechanisms for these observed findings.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lavinia Carmen Uscătescu ◽  
Sarah Said-Yürekli ◽  
Lisa Kronbichler ◽  
Renate Stelzig-Schöler ◽  
Brandy-Gale Pearce ◽  
...  

AbstractWe computed intrinsic neural timescales (INT) based on resting-state functional magnetic resonance imaging (rsfMRI) data of healthy controls (HC) and patients with schizophrenia spectrum disorder (SZ) from three independently collected samples. Five clusters showed decreased INT in SZ compared to HC in all three samples: right occipital fusiform gyrus (rOFG), left superior occipital gyrus (lSOG), right superior occipital gyrus (rSOG), left lateral occipital cortex (lLOC) and right postcentral gyrus (rPG). In other words, it appears that sensory information in visual and posterior parietal areas is stored for reduced lengths of time in SZ compared to HC. Finally, we found that symptom severity appears to modulate INT of these areas in SZ.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weijia Gao ◽  
Dong Cui ◽  
Qing Jiao ◽  
Linyan Su ◽  
Guangming Lu ◽  
...  

Abstract Objective Psychotic symptoms are quite common in patients with pediatric bipolar disorder (PBD) and may affect the symptom severity and prognosis of PBD. However, the potential mechanisms are less well elucidated until now. Thus, the purpose of this study was to investigate the brain functional differences between PBD patients with and without psychotic symptoms. Method A total of 71 individuals including: 27 psychotic PBD (P-PBD), 25 nonpsychotic PBD (NP-PBD), and 19 healthy controls were recruited in the present study. Each subject underwent 3.0 Tesla functional magnetic resonance imaging scan. Four-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA) was employed to detect the local brain activity changes. Analyses of variance (ANOVA) were used to reveal brain regions with significant differences among three groups groups of individuals, and inter-group comparisons were assessed using post hoc tests. Results The ANOVA obtained significant among-group FOCA differences in the left triangular inferior frontal gyrus, left supplementary motor area, left precentral gyrus, right postcentral gyrus, right superior occipital gyrus, and right superior frontal gyrus. Compared with the control group, the P-PBD group showed decreased FOCA in the left supplementary motor area and bilateral superior frontal gyrus and showed increased FOCA in the left triangular inferior frontal gyrus. In contrast, the NP-PBD group exhibited decreased FOCA in the right superior occipital gyrus and right postcentral gyrus and showed increased FOCA in the left orbital inferior frontal gyrus. Compared to the NP-PBD group, the P-PBD group showed decreased FOCA in the right superior frontal gyrus. Conclusion The present findings demonstrated that the two groups of PBD patients exhibited segregated brain functional patterns, providing empirical evidence for the biological basis of different clinical outcomes between PBD patients with and without psychotic symptoms.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1420
Author(s):  
Kun-Hsien Chou ◽  
Chen-Yuan Kuo ◽  
Chih-Sung Liang ◽  
Pei-Lin Lee ◽  
Chia-Kuang Tsai ◽  
...  

Migraine is commonly comorbid with insomnia; both disorders are linked to functional disturbance of the default mode network (DMN). Evidence suggests that DMN could be segregated into multiple subnetworks with specific roles that underline different cognitive processes. However, the relative contributions of DMN subnetworks in the comorbidity of migraine and insomnia remain largely unknown. This study sought to identify altered functional connectivity (FC) profiles of DMN subnetworks in the comorbidity of migraine and insomnia. Direct group comparisons with healthy controls, followed by conjunction analyses, were used to identify shared FC alterations of DMN subnetworks. The shared FC changes of the DMN subnetworks in the migraine and insomnia groups were identified in the dorsomedial prefrontal and posteromedial cortex subnetworks. These shared FC changes were primarily associated with motor and somatosensory systems, and consistently found in patients with comorbid migraine and insomnia. Additionally, the magnitude of FC between the posteromedial cortex and postcentral gyrus correlated with insomnia duration in patients with comorbid migraine and insomnia. Our findings point to specific FC alterations of the DMN subnetwork in migraine and insomnia. The shared patterns of FC disturbance may be associated with the underlying mechanisms of the comorbidity of the two disorders.


Lupus ◽  
2021 ◽  
pp. 096120332110339
Author(s):  
Sirong Piao ◽  
Rong Wang ◽  
Haihong Qin ◽  
Bin Hu ◽  
Juan Du ◽  
...  

Purpose To explore the alterations of spontaneous neuronal activity using amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) in non-NPSLE patients and their relationship with the anxiety and depression statuses. Methods Twenty-three non-NPSLE patients and 28 healthy controls were enrolled in this study. Resting-state functional magnetic resonance imaging was firstly analyzed by ALFF, fALFF, and ReHo. The relationships between ALFF/fALFF/ReHo values of abnormal regions and anxiety/depression rating scales, including Self-Rating Anxiety (SAS) and Self-Rating Depression (SDS), were also analyzed. Results Compared with HC, non-NPSLE had decreased ALFF values in the bilateral postcentral gyrus, while increased ALFF values in the bilateral inferior temporal gyrus, left putamen, and bilateral precuneus. Non-NPSLE showed reduced fALFF values in the left lingual gyrus, left middle occipital gyrus, right postcentral gyrus, and left superior parietal gyrus, while increased fALFF values were in the left inferior temporal gyrus, right hippocampus, bilateral precuneus, and bilateral superior frontal gyrus. Reduced ReHo values were in the bilateral postcentral gyrus and higher ReHo values were in the left inferior temporal gyrus, left putamen, and bilateral superior frontal gyrus. In the non-NPSLE group, the mean ALFF values of bilateral precuneus were positively correlated with the SAS rating scales (R = 0.5519, p = 0.0176); either were the mean ALFF values of right inferior temporal gyrus and SAS rating scales (R = 0.5380, p = 0.0213). The mean fALFF values of left inferior temporal gyrus were positively correlated with SAS rating scales (R = 0.5700, p = 0.0135). And the mean ReHo values of left putamen were positively correlated with SDS (R = 0.5477, p = 0.0186). Conclusion Non-NPSLE exhibited abnormal spontaneous neural activity and coherence in several brain regions mainly associated with cognitive and emotional functions. The ALFF values of bilateral PCUN, the right ITG, the fALFF values of left ITG, and the ReHo values of left PUT may be complementary biomarkers for assessing the psychiatric symptoms.


Sign in / Sign up

Export Citation Format

Share Document