mineral structure
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 29)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Barbara L. Dutrow

Animation flies through the mineral structure of analcime, a mineral with ionic to superionic conductivity. Structure is represented by a ball (showing atoms) and stick (showing bonds) model. The beginning view is a “surface cell” perpendicular to the channel axis looking down <111> to view the pseudo-trigonal representation. Channel axes is 273 Angstroms wide. First image is about 23 times the channel width or 1288 unit cells. Courtesy of David Palmer, CrystalMaker.


2021 ◽  
Author(s):  
Barbara L. Dutrow

Animation flies through the mineral structure of analcime, a mineral with ionic to superionic conductivity. Structure is represented by a ball (showing atoms) and stick (showing bonds) model. The beginning view is a “surface cell” perpendicular to the channel axis looking down <111> to view the pseudo-trigonal representation. Channel axes is 273 Angstroms wide. First image is about 23 times the channel width or 1288 unit cells. Courtesy of David Palmer, CrystalMaker.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7742
Author(s):  
Laura Cipriano Crapina ◽  
Liva Dzene ◽  
Jocelyne Brendlé ◽  
Florence Fourcade ◽  
Abdeltif Amrane ◽  
...  

Advanced oxidation processes are considered as a promising technology for the removal of persistent organic pollutants from industrial wastewaters. In particular, the heterogeneous electro-Fenton (HEF) process has several advantages such as allowing the working pH to be circumneutral or alkaline, recovering and reusing the catalyst and avoiding the release of iron in the environment as a secondary pollutant. Among different iron-containing catalysts, studies using clay-modified electrodes in HEF process are the focus in this review. Fe(III)/Fe(II) within the lattice of clay minerals can possibly serve as catalytic sites in HEF process. The description of the preparation and application of clay-modified electrodes in the degradation of model pollutants in HEF process is detailed in the review. The absence of mediators responsible for transferring electrons to structural Fe(III) and regenerating catalytic Fe(II) was considered as a milestone in the field. A comprehensive review of studies investigating the use of electron transfer mediators as well as the mechanism behind electron transfer from and to the clay mineral structure was assembled in order to uncover other milestones to be addressed in this study area.


2021 ◽  
Author(s):  
R.A. Abdulvaliyev ◽  
◽  
A. Akcil ◽  
◽  
◽  
...  

As a result of separation of a fine fraction of gibbsite-kaolinite low-quality bauxite from the Krasnogorsky deposit, it is possible to increase its silicon module. When bauxite is chemically activated in a solution of sodium bicarbonate, the fine fraction is effectively separated from the large one and the phase composition changes – the calcium silicate phase disappears and the calcite phase is formed. With an increase in the activation temperature, the content of kaolinite and siderite decreases, the content of quartz and hematite increases. Studies have shown that at chemical activation temperatures of 120 oC, lasting more than 120 minutes and 200 oC, lasting more than 40 minutes, a dawsonite phase is formed in bauxite, which compacts the mineral structure. When determining the mode of chemical activation, it is necessary to take into account the negative possibility of the formation of dawsonite.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1636
Author(s):  
Sangyun Seo ◽  
Kyu Sung Han ◽  
Sung Il Lee ◽  
Myong Jun Kim

The processing of Cu, Co, and Zn at the Boleo project in Mexico involves two-stage (oxidation–reduction) leaching to extract a total of 85–88% Cu in 4 h. The first stage is an oxidation leaching using sulphuric acid (120 kg/tonne ore) at an Eh of 900 mV for 2 h. Then, the reduction stage takes place in 2 h with SO2 gas sparging for Mn and Co extraction at an Eh of 350–370 mV. The final extraction rates of metal values are 92% of Mn, 80% of Co, and 60% of Co, respectively, after 4 h of leaching at 70 °C. However, the same metal recoveries were obtained within 2 h using an equal amount of sulphuric acid and the addition of 25 kg of SO2 per tonne of ore in a single stage leaching in this research. In this case, the Fe extracted from the ore as Fe2+/Fe3+ is believed to have acted as an electrochemical couple contiguously leaching the Cu sulphide and Mn oxides, which also increased the Cu recovery as the Cu mineralised mostly intergrowths in these mineral structure matrices. A significant improvement was made in which the leaching time was halved to 2 h compared to 4 h in the previous plant design and current operation, involving the two-stage oxidation–reduction leaching.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jian-Ming Zhi ◽  
Jie Li ◽  
Jia-Hao Wang ◽  
Tian-Yu Jiang ◽  
Ze-Yi Hua

The influence of the evolution rule of basicity (0.6∼2.4) on the mineral composition and microstructure of sinter is studied by using a polarizing microscope, and the comprehensive application analysis of the drum index, vertical sintering speed, and yield of sinter shows that, over the course of an increase in basicity (0.6∼1.0), the mineral structure changed from the original porphyritic-granular structure to a porphyritic structure. At the same time, there was no calcium ferrite phase in the bonding phase at a basicity of less than 1.0; therefore, the downward trend of the three indicators is obvious. When the basicity was further increased to approximately 1.6, the main structure of the mineral phase changed from a corrosion structure to an interweaving corrosion structure. Because of the existence of a porphyritic-granular structure, the structure of the mineral phase was extremely inhomogeneous and most complex near the basicity of 1.6; although a small amount of calcium ferrite displayed an acicular structure, the drum index appeared to show a very low value. With an increase in basicity to 2.0, the mineral phase structure was dominated by an interweaving corrosion structure with a uniform framework, and the content of calcium ferrite reached the highest value. Moreover, a clear acicular structure developed, and the drum index also increased to the highest value. At a basicity of more than 2.0, a mineral structure began to appear and the corrosion, porphyritic-granular structure, and the drum index also showed a slightly declining trend. Therefore, in the actual production process, basicity should be avoided as far as possible at around 1.0 and 1.6 and it should be controlled at around 2.0. At the same time, based on the mineral facies data set of this paper, the convolutional neural network is used to carry out a simple prediction model experiment on the basicity corresponding to the mineral facies photos, and the effect is quite good, which provides a new idea and method for the follow-up study of mineral facies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katharina R. Lenhardt ◽  
Hergen Breitzke ◽  
Gerd Buntkowsky ◽  
Erik Reimhult ◽  
Max Willinger ◽  
...  

AbstractWe report here on structure-related aggregation effects of short-range ordered aluminosilicates (SROAS) that have to be considered in the development of synthesis protocols and may be relevant for the properties of SROAS in the environment. We synthesized SROAS of variable composition by neutralizing aqueous aluminium chloride with sodium orthosilicate at ambient temperature and pressure. We determined elemental composition, visualized morphology by microscopic techniques, and resolved mineral structure by solid-state 29Si and 27Al nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Nitrogen sorption revealed substantial surface loss of Al-rich SROAS that resembled proto-imogolite formed in soils and sediments due to aggregation upon freezing. The effect was less pronounced in Si-rich SROAS, indicating a structure-dependent effect on spatial arrangement of mass at the submicron scale. Cryomilling efficiently fractured aggregates but did not change the magnitude of specific surface area. Since accessibility of surface functional groups is a prerequisite for sequestration of substances, elucidating physical and chemical processes of aggregation as a function of composition and crystallinity may improve our understanding of the reactivity of SROAS in the environment.


2021 ◽  
Vol 25 (01) ◽  
pp. 094-104
Author(s):  
Valentina Testini ◽  
Laura Eusebi ◽  
Umberto Tupputi ◽  
Francesca Anna Carpagnano ◽  
Francesco Bartelli ◽  
...  

AbstractBone plays an important role in regulating mineral balance in response to physiologic needs. In addition, bone is subject to a continuous remodeling process to maintain healthy bone mass and growth. Metabolic bone diseases are a heterogeneous group of diseases caused by abnormalities of bone mass, mineral structure homeostasis, bone turnover, or bone growth. In pediatrics, several significant advances have been made in recent years in the diagnosis of metabolic bone diseases (e.g., osteogenesis imperfecta, hyperparathyroidism, rickets, renal osteodystrophy, pediatric osteoporosis, and osteopetrosis). Imaging is fundamental in the diagnosis of these pathologies.


2020 ◽  
Vol 67 (4) ◽  
pp. 1180-1195
Author(s):  
Amina Amarray ◽  
Sanae El Ghachtouli ◽  
Mohammed Ait Himi ◽  
Mohamed Aqil ◽  
Khaoula Khaless ◽  
...  

The lamellar and nanostructured manganese oxide materials were chemically synthesized by soft and non-toxic methods. The materials showed a monophasic character, symptomatic morphologies, as well as the predominance of a mesoporous structure. The removal of heavy metals Cd(II) and Pb(II) by the synthesized materials Na-MnO2, Urchin-MnO2 and Cocoon-MnO2 according to the mineral structure and nature of the sites were also studied. Kinetically, the lamellar manganese oxide material Na-MnO2 was the most efficient of the three materials which had more vacancies in the MnO6 layers as well as in the space between the layers. The nanomaterials Urchin-MnO2 and Cocoon-MnO2 could exchange with the metal cations in their tunnels and cavities, respectively. The maximum adsorbed quantities followed the order (Pb(II): Na-MnO2 (297 mg/g)>Urchin-MnO2 (264 mg/g)>Cocoon-MnO2 (209 mg/g), Cd(II): Na-MnO2 (199 mg/g)>Urchin-MnO2 (191 mg/g)>Cocoon-MnO2 (172 mg/g)). Na-MnO2 material exhibited the best stability among the different structures, Na-MnO2 presented a very low amount of the manganese released. The results obtained showed the potential of lamellar manganese oxides (Na-MnO2) and nanostructures (Urchin-MnO2 and Cocoon-MnO2) as selective, economical, and stable materials for the removal of toxic metals in an aqueous medium.


Sign in / Sign up

Export Citation Format

Share Document