tubular transport
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 11)

H-INDEX

36
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Joanne Chia ◽  
Shyi-Chyi Wang ◽  
Sheena Wee ◽  
David James Gill ◽  
Felicia Tay ◽  
...  

The Src tyrosine kinase controls cancer-critical protein glycosylation through Golgi to ER relocation of GALNTs enzymes. How Src induces this trafficking event is unknown. Golgi to ER transport depends on the GTP Exchange factor (GEF) GBF1 and small GTPase Arf1. Here we show that Src induces the formation of tubular transport carriers containing GALNTs. The kinase phosphorylates GBF1 on 10 tyrosine residues; two of them, Y876 and Y898 are located near the C-terminus of the Sec7 GEF domain. Their phosphorylation promotes GBF1 binding to the GTPase; molecular modeling suggests partial melting of the Sec7 domain and intramolecular rearrangement. GBF1 mutants defective for these rearrangements prevent binding, carrier formation and GALNTs relocation, while phosphomimetic GBF1 mutants induce tubules. In sum, Src promotes GALNTs relocation by promoting GBF1 binding to Arf1. Based on residue conservation, similar regulation of GEF-Arf complexes by tyrosine phosphorylation could be a conserved and wide-spread mechanism.


Author(s):  
Detlef Bockenhauer ◽  
Robert Kleta

AbstractEvolution moves in mysterious ways. Excretion of waste products by glomerular filtration made perfect sense when life evolved in the ocean. Yet, the associated loss of water and solutes became a problem when life moved onto land: a serious design change was needed and this occurred in the form of ever more powerful tubules that attached to the glomerulus. By reabsorbing typically more than 99% of the glomerular filtrate, the tubules not only minimise urinary losses, but, crucially, also maintain homeostasis: tubular reabsorption and secretion are adjusted so as to maintain an overall balance, in which urine volume and composition matches intake and environmental stressors. A whole orchestra of highly specialised tubular transport proteins is involved in this process and dysfunction of one or more of these results in the so-called kidney tubulopathies, characterised by specific patterns of clinical and biochemical abnormalities. In turn, recognition of these patterns helps establish a specific diagnosis and pinpoints the defective transport pathway. In this review, we will discuss these clinical and biochemical “fingerprints” of tubular disorders of salt-handling and how sodium handling affects volume homeostasis but also handling of other solutes.


2021 ◽  
Vol 344 ◽  
pp. 26-33
Author(s):  
A.C.N. Moraes ◽  
D.S. Freire ◽  
H. Habibi ◽  
J. Lowe ◽  
V.F. Magalhães

2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Shanna L. Bowman ◽  
Linh Le ◽  
Yueyao Zhu ◽  
Dawn C. Harper ◽  
Anand Sitaram ◽  
...  

Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1–dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3–BLOC-1 super-complex.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhongmin Tian ◽  
Mingyu Liang

AbstractHypertension is a leading risk factor for disease burden worldwide. The kidneys, which have a high specific metabolic rate, play an essential role in the long-term regulation of arterial blood pressure. In this review, we discuss the emerging role of renal metabolism in the development of hypertension. Renal energy and substrate metabolism is characterized by several important and, in some cases, unique features. Recent advances suggest that alterations of renal metabolism may result from genetic abnormalities or serve initially as a physiological response to environmental stressors to support tubular transport, which may ultimately affect regulatory pathways and lead to unfavorable cellular and pathophysiological consequences that contribute to the development of hypertension.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Katja Jansen ◽  
Marianna Evangelopoulou ◽  
Carla Pou Casellas ◽  
Sarina Abrishamcar ◽  
Jitske Jansen ◽  
...  

AbstractTissue decellularization yields complex scaffolds with retained composition and structure, and plants offer an inexhaustible natural source of numerous shapes. Plant tissue could be a solution for regenerative organ replacement strategies and advanced in vitro modeling, as biofunctionalization of decellularized tissue allows adhesion of various kinds of human cells that can grow into functional tissue. Here, we investigated the potential of spinach leaf vasculature and chive stems for kidney tubule engineering to apply in tubular transport studies. We successfully decellularized both plant tissues and confirmed general scaffold suitability for topical recellularization with renal cells. However, due to anatomical restrictions, we believe that spinach and chive vasculature themselves cannot be recellularized by current methods. Moreover, gradual tissue disintegration and deficient diffusion capacity make decellularized plant scaffolds unsuitable for kidney tubule engineering, which relies on transepithelial solute exchange between two compartments. We conclude that plant-derived structures and biomaterials need to be carefully considered and possibly integrated with other tissue engineering technologies for enhanced capabilities.


2020 ◽  
Author(s):  
Joanne Chia ◽  
Samuel Wang ◽  
Sheena Wee ◽  
David James Gill ◽  
Lee Violette ◽  
...  

AbstractThe Src tyrosine kinase controls cancer-critical protein glycosylation through Golgi to ER relocation of GALNTs enzymes. How Src induces this trafficking event is unknown. Golgi to ER transport depends on the GTP Exchange factor (GEF) GBF1 and small GTPase Arf1. Here we show that Src induces the formation of tubular transport carriers containing GALNTs through the activation of a GBF1-Arf1 complex. The complex is initiated by phosphorylation on GBF1 on 10 tyrosine residues; two of them, Y876 and Y898 are located near the C-terminus of the Sec7 GEF domain. Their phosphorylation promotes partial melting of the Sec7 domain, favoring binding to the GTPase. Perturbation of these rearrangements prevent GALNTs relocation. In sum, Src promotes GALNTs relocation by favoring binding of GBF1 to Arf1. Regulation of a GEF-Arf axis by tyrosine phosphorylation appears to be a highly conserved and wide-spread mechanism.


2020 ◽  
pp. 5112-5123
Author(s):  
Nine V.A.M. Knoers ◽  
Elena N. Levtchenko

Glycosuria—glucose reabsorption in the proximal tubule is carried out by two different pairs of apical Na+-dependent (SGLT1 and -2) and basolateral Na+-independent (GLUT1 and -2) glucose transporters. Abnormalities in renal glucose transport can be seen in association with other defects of proximal tubular transport. Familial renal glycosuria is a rare autosomal recessive condition caused by mutations in the SGLT2-encoding gene, SLC5A2. Phosphate-handling disorders—the plasma concentration of inorganic phosphate depends on the balance between intestinal absorption, renal excretion, and the internal contribution from bone. Changes of serum phosphate levels can be caused by numerous inherited and acquired conditions. Disorders associated with increased urinary phosphate excretion and low serum phosphate levels produce symptoms that mainly affect the bones: rickets in children and osteomalacia in adults. Magnesium-handling disorders—normal plasma magnesium concentration is achieved by variation of urinary magnesium excretion in response to altered uptake by the intestine. The main site of magnesium absorption is the small bowel, via paracellular simple diffusion at high intraluminal concentrations, and via active transcellular uptake through the magnesium channel TRPM6 at low concentrations. Regulation and fine-tuning of serum magnesium concentration occurs primarily in the kidney. Genetic disorders of magnesium handling include Gitelman’s syndrome. Aminoaciduria and renal Fanconi’s syndrome—most amino acids (except for tryptophan, which is protein bound) are freely filtered by the glomerulus, after which 95 to 99.9% are reabsorbed in the proximal tubules by apical Na+-dependent cotransporters and Na+-independent cotransporters. Aminoaciduria is defined as urinary excretion of more than 5% of the filtered load of an amino acid. Renal Fanconi’s syndrome is characterized by a generalized defect of both Na+-coupled and receptor-mediated proximal tubular transport.


2019 ◽  
Vol 19 (22) ◽  
pp. 2049-2057 ◽  
Author(s):  
J.D. Galíndez-Cerón ◽  
R.J.B. Jorge ◽  
M.H. Chavez-Acosta ◽  
A.R.C. Jorge ◽  
N.T.Q. Alves ◽  
...  

Background: Scorpion venom causes renal injury and affects vascular ion-channels function. Centruroides margaritatus scorpion is found in Colombia and is frequently the cause of envenomation accidents; however, its renal impact has never been investigated. Objective: To evaluate the effects of C. margaritatus venom (CmV) on renal parameters using isolated rat kidney and renal cell culture models. Methods: Wistar rats (n = 5, weighing 240-300 g) were first perfused with Krebs-Henseleit solution containing 6 g 100 mL-1 bovine serum albumin. After 30 minutes, the kidneys were perfused with CmV to a final concentration of 10 μgmL-1; evaluation was performed by measuring Perfusion Pressure (PP), Renal Vascular Resistance (RVR), Urinary Flow (UF), Glomerular Filtration Rate (GFR), and percentage of electrolyte tubular transport. Moreover, kidney histological analyses and cell cytotoxicity in renal tubule epithelial cells (MDCK) and proximal tubular cells (LLC-MK2) were assessed. Results: CmV increased PP and RVR 60 min after perfusion. On the other hand, UF, GFR, and the percentages of sodium, potassium and chloride tubular transport decreased after experimental envenomation. UF dropped after 120 min, while GFR and percentage of electrolyte tubular transport diminished after 60, 90 and 120 min. CmV was not toxic to MDCK cell line but reduced the viability of LLC-MK2 cells at concentrations ranging from 6.25 to 200 μgmL-1. Histological analyses disclosed hydropic degeneration, edema, and protein deposits. Flow cytometry disclosed that cell death occurred predominantly by necrosis. Conclusion: Our results suggest that C. margaritatus venom can trigger renal impairment, mainly in the proximal kidney tubule.


Sign in / Sign up

Export Citation Format

Share Document