Aromatic polyimine (PIM) was prepared through condensation polymerization between p-phenylene diamine and terephthalaldehyde via Schiff reactions. PIM can be physically crosslinked with ferrous ions into gel. The gel-composites, calcined at two consecutive stages, with temperatures ranging from 600 to 1000 °C, became Fe- and N-doped carbonaceous organic frameworks (FeNC), which demonstrated both graphene- and carbon nanotube-like morphologies and behaved as an electron-conducting medium. After the two-stage calcination, one at 1000 °C in N2 and the other at 900 °C in a mixture of N2 and NH3, an FeNC composite (FeNC-1000A900) was obtained, which demonstrated a significant O2 reduction peak in its current–voltage curve in the O2 atmosphere, and thus, qualified as a catalyst for the oxygen reduction reaction. It also produced a higher reduction current than that of commercial Pt/C in a linear scanning voltage test, and the calculated e-transferred number reached 3.85. The max. power density reached 400 mW·cm−2 for the single cell using FeNC-1000A900 as the cathode catalyst, which was superior to other FeNC catalysts that were calcined at lower temperatures. The FeNC demonstrated only 10% loss of the reduction current at 1600 rpm after 1000 redox cycles, as compared to be 25% loss for the commercial Pt/C catalyst in the durability test.