disordered materials
Recently Published Documents


TOTAL DOCUMENTS

487
(FIVE YEARS 49)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Vol 140 (11) ◽  
Author(s):  
Neil L. Allan ◽  
Sergio Conejeros ◽  
Judy N. Hart ◽  
Chris E. Mohn

AbstractThe energy landscape concept is increasingly valuable in understanding and unifying the structural, thermodynamic and dynamic properties of inorganic solids. We present a range of examples which include (i) structure prediction of new bulk phases including carbon nitrides, phosphorus carbides, LiMgF3 and low-density, ultra-flexible polymorphs of B2O3, (ii) prediction of graphene and related forms of ZnO, ZnS and other compounds which crystallise in the bulk with the wurtzite structure, (iii) solid solutions, (iv) understanding grossly non-stoichiometric oxides including the superionic phases of δ-Bi2O3 and BIMEVOX and the consequences for the mechanisms of ion transport in these fast ion conductors. In general, examination of the energy landscapes of disordered materials highlights the importance of local structural environments, rather than sole consideration of the average structure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daria Szewczyk ◽  
Jonathan F. Gebbia ◽  
Andrzej Jeżowski ◽  
Alexander I. Krivchikov ◽  
Tatiana Guidi ◽  
...  

AbstractDisorder–disorder phase transitions are rare in nature. Here, we present a comprehensive low-temperature experimental and theoretical study of the heat capacity and vibrational density of states of 1-fluoro-adamantane (C10H15F), an intriguing molecular crystal that presents a continuous disorder–disorder phase transition at T = 180 K and a low-temperature tetragonal phase that exhibits fractional fluorine occupancy. It is shown that fluorine occupancy disorder in the low-T phase of 1-fluoro-adamantane gives rise to the appearance of low-temperature glassy features in the corresponding specific heat (i.e., “boson peak” -BP-) and vibrational density of states. We identify the inflation of low-energy optical modes as the main responsible for the appearance of such glassy heat-capacity features and propose a straightforward correlation between the first localized optical mode and maximum BP temperature for disordered molecular crystals (either occupational or orientational). Thus, the present study provides new physical insights into the possible origins of the BP appearing in disordered materials and expands the set of molecular crystals in which “glassy-like” heat-capacity features have been observed.


2021 ◽  
Vol 8 (3) ◽  
pp. 031311
Author(s):  
Riley Hanus ◽  
Ramya Gurunathan ◽  
Lucas Lindsay ◽  
Matthias T. Agne ◽  
Jingjing Shi ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andreja Bencan ◽  
Emad Oveisi ◽  
Sina Hashemizadeh ◽  
Vignaswaran K. Veerapandiyan ◽  
Takuya Hoshina ◽  
...  

AbstractThe nature of the “forbidden” local- and long-range polar order in nominally non-polar paraelectric phases of ferroelectric materials has been an open question since the discovery of ferroelectricity in oxide perovskites, ABO3. A currently considered model suggests locally correlated displacements of B-site atoms along a subset of <111> cubic directions. Such off-site displacements have been confirmed experimentally; however, being essentially dynamic in nature they cannot account for the static nature of the symmetry-forbidden polarization implied by the macroscopic experiments. Here, in an atomically resolved study by aberration-corrected scanning transmission electron microscopy complemented by Raman spectroscopy, we reveal, directly visualize and quantitatively describe static, 2–4 nm large polar nanoclusters in the nominally non-polar cubic phases of (Ba,Sr)TiO3 and BaTiO3. These results have implications on understanding of the atomic-scale structure of disordered materials, the origin of precursor states in ferroelectrics, and may help answering ambiguities on the dynamic-versus-static nature of nano-sized clusters.


2021 ◽  
Vol 118 (23) ◽  
pp. 231103
Author(s):  
Nicolas Bachelard ◽  
Chad Ropp ◽  
Sui Yang ◽  
Xiang Zhang
Keyword(s):  

2021 ◽  
Author(s):  
Kevin Galloway ◽  
Erin Teich ◽  
Xiaoguang Ma ◽  
Christoph Kammer ◽  
Ian Graham ◽  
...  

Abstract A fundamental challenge for disordered solids is predicting macroscopic yield from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we perform laboratory experiments and numerical simulations that are designed to do just that: 2D dense colloidal systems are subjected to oscillatory shear, and particle trajectories and bulk rheology are measured. We quantify particle microstructure using excess entropy. Results reveal a direct relation between excess entropy and energy dissipation, that is insensitive to the nature of interactions among particles. We use this relation to build a physically-informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Achintha Ihalage ◽  
Yang Hao

AbstractCompositional disorder induces myriad captivating phenomena in perovskites. Target-driven discovery of perovskite solid solutions has been a great challenge due to the analytical complexity introduced by disorder. Here, we demonstrate that an unsupervised deep learning strategy can find fingerprints of disordered materials that embed perovskite formability and underlying crystal structure information by learning only from the chemical composition, manifested in $$({{\rm{A}}}_{1-{\rm{x}}}{{\rm{A}}^{\prime} }_{{\rm{x}}}){{\rm{BO}}}_{3}$$ ( A 1 − x A ′ x ) BO 3 and $${\rm{A}}({{\rm{B}}}_{1-{\rm{x}}}{{\rm{B}}^{\prime} }_{{\rm{x}}}){{\rm{O}}}_{3}$$ A ( B 1 − x B ′ x ) O 3 formulae. This phenomenon can be capitalized to predict the crystal symmetry of experimental compositions, outperforming several supervised machine learning (ML) algorithms. The educated nature of material fingerprints has led to the conception of analogical materials discovery that facilitates inverse exploration of promising perovskites based on similarity investigation with known materials. The search space of unstudied perovskites is screened from ~600,000 feasible compounds using experimental data powered ML models and automated web mining tools at a 94% success rate. This concept further provides insights on possible phase transitions and computational modelling of complex compositions. The proposed quantitative analysis of materials analogies is expected to bridge the gap between the existing materials literature and the undiscovered terrain.


Sign in / Sign up

Export Citation Format

Share Document