freezing period
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 12 (3) ◽  
pp. 84-91
Author(s):  
Aminu Imam ◽  
◽  
Christianah Oyegbola ◽  
Maryam Busari ◽  
Rukayat Jaji-Sulaimon ◽  
...  

Organophosphates are irreversible cholinesterase (ChE) inhibitors with neurological consequences, and there is not yet an effective antidote. Here, we investigated the effects of Nigella sativa oil (NSO) on the ChE inhibition, neurobehavioural and histopathological changes following dichlorvos (DDVP) ingestions in rats. Thirty-two male Wistar rats were randomised into four groups, receiving 1 ml/kg of normal saline, 8.8 mg/kg of DDVP, 8.8 mg/kg of DDVP and 1 ml/kg of NSO, and 1 ml/kg of NSO only respectively, for 14 consecutive days. Locomotor, anxiety-like behaviours and spatial working memory were assessed on the 14th day, using open field (OF), Y-maze and modified elevated plus maze paradigms. The rats were euthanized on the 15th day and the brains excised; three brains were fixed for histopathology, and the other five prepared for biochemical analysis of acetyl cholinesterase (AChE). DDVP exposure caused significant reductions in frontal, amygdala and cerebella AChE activity, spontaneous alternations, line crossing and rearing frequencies and time in centre square, and caused increase in freezing period, transfer latency and necrotic-like cells. NSO intervention was able to reverse DDVP effects on AChE activities, explorative, locomotor, anxiety and spatial memory behaviours in co-exposed rats. It also preserved the histological integrity of the investigated brain regions. It can be concluded that NSO, may be potent against organophosphates induced neurotoxicity and their neurobehavioural consequences through the modulation of AChE activities.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhiyong Wang ◽  
Peilei Sun ◽  
Lihua Wang ◽  
Mengyue Zhang ◽  
Zihao Wang

It is of great significance to monitor sea ice for relieving and preventing sea ice disasters. In this paper, the growth and development of sea ice in Liaodong Bay of Bohai Sea in China were monitored using Sentinel-2 remote sensing data during the freezing period from January to March in 2018. Based on the comprehensive analysis of the spectral characteristics of seawater and sea ice in visible bands, supplemented by the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI), we proposed a new method based on decision tree classification for extracting sea ice types in Liaodong Bay of Bohai Sea. Using the remote sensing data of eight satellite overpasses acquired from Sentinel-2A/B satellites, the distribution and area of the different sea ice types in Liaodong Bay during the freezing period of 2017/2018 were obtained. Compared with the maximum likelihood (ML) classification method and the support vector machine (SVM) classification method, the proposed method has higher accuracy when discriminating the sea ice types, which proved the new method proposed in this paper is suitable for extracting sea ice types from Sentinel-2 optical remote sensing data in Liaodong Bay. And its classification accuracy reaches 88.05%. The whole process of evolution such as the growth and development of sea ice in Liaodong Bay during the freezing period from January to March in 2018 was monitored. The maximum area of sea ice was detected on 27 January 2018, about 10,187 km2. At last, the quantitative relationship model between the sea ice area and the mean near-surface temperature derived by MODIS data in Liaodong Bay was established. Through research, we found that the mean near-surface temperature was the most important factor for affecting the formation and melt of sea ice in Liaodong Bay.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mingli Zhang ◽  
Guang Li ◽  
Dekai Wang ◽  
Weilin Ye ◽  
Zhixiong Zhou ◽  
...  

Freeze-thaw cycles can significantly change the hydrologic and thermal state of slopes in cold regions and affect their stability. Landslides occur continuously in the slip area of seasonally frozen soil area during the freezing period. The freeze-thaw action and the difference in the characteristics of the underlying surface of the slope are important factors inducing landslides. Taking Heifangtai slope in Gansu Province as an example, the freezing-thawing characteristics of the slope surfaces under different underlying surface conditions were analyzed by field monitoring. A thermohydromechanical coupling model was established to reconstruct the frozen stagnant water process of the Heifangtai landslide zone, and the impact of freeze-thaw action on the loess landslide zone was studied. The results show that differences in the underlying surface led to different freezing-thawing characteristics between the unsaturated area and the groundwater overflow zone. During the freezing period, the soil freezing depth was greater, and the freezing duration was longer in the unsaturated area. The frozen stagnant water effect of the Heifangtai loess landslide zone is obvious. The maximum difference in the groundwater level between February and August could reach nearly 1 m. Meanwhile, the frozen stagnant water process of the Heifangtai landslide zone has a slip-promoting action on the slope. The factor of safety declined during the freezing period and increased during the thawing period. It reached a minimum of 1.42 in February.


2021 ◽  
Author(s):  
Yan Zhang ◽  
Wanli Zhao ◽  
Aixin Yu ◽  
Yucan Liu ◽  
Fangyun Ren ◽  
...  

Abstract To explore the migration law of atrazine during the freezing process, an indoor simulated freezing experiment was carried out. The distribution coefficient (K) was used to characterize the migration ability of atrazine and explore the effects of freezing thickness, freezing temperature, and initial concentration on the migration of atrazine between ice and water. The research results showed that the concentration relationship between the ice and water phases was: ice < water before freezing < water under the ice. This indicates that atrazine migrated to the water under the ice during the freezing process in our experiment. The K value decreased as the ice thickness, freezing temperature, and initial concentration increased; thus, the greater the ice thickness, the higher the freezing temperature, the greater the initial atrazine concentration, and the greater the ability of atrazine to migrate to the water under the ice. This study provides a reference for managing natural waterbodies in high-latitude and high-altitude environments during the freezing period.


2021 ◽  
Author(s):  
Dongsheng Zhao ◽  
Xuan Gao ◽  
Yi Yang

Abstract The ecosystems of Qinghai-Tibetan Plateau (QTP) are very sensitive to climate change because of their unique structure and function. However, little attention has been paid to variations in cold non-growing season. In this study, based on daily mean temperature from 63 meteorological stations throughout the QTP during the period 1961−2018, the spatial and temporal variations in the freezing period (FP) were investigated. The FP was defined as the period between the date of the first autumn freeze and the date of the first spring thaw in the second year. Understanding how the FP changes are imperative in predicting future climate change and decision-making for implementing ecological conservation on the plateau. The results showed that the start of freezing period (SFP) exhibited a pronounced increasing trend with a rate of 0.0704 days year−1 and the end of freezing period (EFP) showed an obviously decreasing trend with a rate of −0.2537 days year−1 at the regional scale. The length of freezing period (LFP) presented a significant negative trend at a rate of −0.3256 days year−1 for regional scale, which was mainly attributed to the earlier EFP. Spatially, earlier EFP and shorter LFP mainly occurred in the south and north of the QTP. Furthermore, this study found that the variations in the SFP, EFP, and LFP were highly dependent on the elevation with EFP and LFP are positively correlated with elevation, while SFP is negatively correlated with elevation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lanfeng Bo ◽  
Zhanbin Li ◽  
Peng Li ◽  
Guoche Xu ◽  
Lie Xiao ◽  
...  

In the arid and semi-arid regions of the Loess Plateau, seasonal freezing and thawing influence soil water movement, and water movement directly influences vegetation growth. However, currently, research with regard to freezing and thawing processes under various vegetation types and the mechanism of soil water movement is lacking. Therefore, the present study explored soil water migration characteristics of two typical vegetation types [arbor land (AL) and shrub land (SL)] on the Loess Plateau during seasonal freezing and thawing processes using bare land (BL) as a control. We used field measured data for hourly soil temperature (ST) and soil water content (SWC) at a depth of 100 cm below the soil surface from November 2017 to March 2018. Freezing and thawing process was divided into three stages based on ST change (initial freezing period, stable freezing period, and thawing period). Compared with previous studies in this area, ST is lower than expected, and SWC migration characteristics are also different. The results revealed that: 1) the maximum freezing depth of AL and SL was 60 cm, which was 30 cm less than that of BL. The freezing date of each soil layer in BL was the earliest and average ST value was the lowest. BL had the highest degree of freezing. The freezing of all soil layers in AL occurred at a later date than that of SL. ST and the minimum soil freezing temperatures were higher than those of SL, and the capacity of AL to resist freezing was higher; 2) the SWCs in AL and BL at depths of 0–10 cm and 10–30 cm decreased, whereas SWCs of AL and BL at a depth of 60 cm increased by 152 and 146%, respectively. The SWCs of SL at soil depths of 0–10 cm, 10–30 cm, and 30–60 cm increased by 46.3, 78.4 and 205%, respectively. The amount and distribution of soil moisture in SL were optimum when compared to those of AL and BL. The results of the present study could provide a scientific basis for vegetation restoration in arid and semi-arid areas of the Loess Plateau.


2021 ◽  
Vol 71 (1&2) ◽  
pp. 25
Author(s):  
Jiang Haibo ◽  
Jin Jin ◽  
Qin Zhipeng

In order to quantify the migration rule of water in composite lining canal foundation soil during the freeze-thaw process, the outdoor prototype test is performed to prove the change rules of water in different positions and depths of the rigidflexible mixed composite lining canal foundation during the whole freeze-thaw cycle. The prototype observation test shows that during the freezing period, the water content within the 0~80cm depth of the canal foundation soil increases with the depth, and that within the depth of 80~160cm decreases gradually with the depth. In the freezing period, water accumulates in the depth of 60 ~ 80cm, with a maximum water transfer amount of +13.2%, which occurs at the canal bottom. In the thawing period, the maximum water content also occurs at the canal bottom, with a maximum water transfer amount of -11.0%. Through the laboratory test of soil samples, the water migration development and change rules of the canal foundation soil, under different moisture contents and temperature gradients are studied in unilateral pattern. In the case of the same top plate control temperature, soil samples with similar initial water contents have similar water transfer amounts. The samples with higher initial water content have higher water transfer amount, with higher water accumulation, normally accumulating in the depth of 16~18cm. The results indicate that high water contents make it easy to gather water in soil samples during the freezing period.


2020 ◽  
Vol 12 (5) ◽  
pp. 1782
Author(s):  
Fanxiang Meng ◽  
Renjie Hou ◽  
Tianxiao Li ◽  
Qiang Fu

In a seasonally frozen soil area, there is frequent energy exchange between soil and environment, which changes the hydrological cycle process, and then has a certain impact on the prediction and management of agricultural soil moisture. To reveal the effects of different modes of regulation on the energy budget of soil in a region with seasonally frozen soil, four treatments, including the regulation of bare land (BL), biochar (CS), and straw (JS), and the combined regulation of biochar and straw (CJS), were used in field experiments. The variations in the soil temperature, liquid water content, and total water content were analyzed, the energy budget of the soil was calculated, the response functions of the soil energy were determined, and the mechanism of soil energy transfer was elucidated. The results showed that, during the freezing period, the JS treatment reduced the amplitudes of the variations in the soil temperature and liquid water content and increased the water content at the soil surface. During the thawing period, the CJS treatment effectively improved the soil hydrothermal conditions. During the freezing period, the heat absorbed by the CS and JS treatments reduced the fluctuation of the soil energy budget. At a soil depth of 10 cm, the spectral entropy of a time series of the soil net energy was 0.837 under BL treatment, and the CS, JS, and CJS treatments decreased by 0.015, 0.059, and 0.045, respectively, compared to the BL treatment. During the thawing period, the CS treatment promoted energy exchange between the soil and the external environment, and the spectral entropy of a time series of the soil net energy was increased; the JS treatment had the opposite effect. The CJS treatment weakened the impact of environmental factors on the soil energy budget during the freezing period, while it enhanced the energy exchange between the soil and the environment during the thawing period. This study can provide important theoretical and technical support for the efficient utilization of soil hydrothermal resources on farmland in cold regions.


2020 ◽  
Vol 399 ◽  
pp. 190-195
Author(s):  
Vanderson Alves Agra Brandão ◽  
Robson Araújo de Queiroz ◽  
Hallyson Gustavo Guedes de Morais Lima ◽  
Raimundo Pereira de Farias ◽  
Ana Raquel Carmo de Lima ◽  
...  

Cashew is a fruit with high nutritional value and great economic importance in the Northeast region of Brazil, however, due to high moisture content, it is highly perishable. Freezing is one the most efficient methods for conservationof biological products, especially, fruits and vegetables. Then, the optimizationof the freezing process by numerical simulation is crucial. In this sense, the objective of this work was to investigate the influence of the moisture content on the cooling and freezing processes of cashew appleby using thecomputational fluid dynamics technique. Results of the cooling and freezing kinetics of the cashew apple and temperature distribution inside the fruitduring these processes are presented and analyzed. It was verified that the variation inthe initial moisture content had small effect in the total time of the process, however the samples with higher moisture content presented higher heat transfer rate during the cooling period and lesser during the freezing period.


Sign in / Sign up

Export Citation Format

Share Document