chemical inactivation
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 298 ◽  
pp. 114287
Author(s):  
Sarah J. Edwards ◽  
Sarah Caruso ◽  
Willy W. Suen ◽  
Sarah Jackson ◽  
Brenton Rowe ◽  
...  

Author(s):  
Noemi Hemelíková ◽  
Asta Žukauskaitė ◽  
Tomáš Pospíšil ◽  
Miroslav Strnad ◽  
Karel Doležal ◽  
...  

Author(s):  
Lorena Franco-Martínez ◽  
Fernando Tecles ◽  
Alberto Torres-Cantero ◽  
Enrique Bernal ◽  
Indra San Lázaro ◽  
...  

Abstract Objectives The aim of the present study was to validate a commercially available automated assay for the measurement of total adenosine deaminase (tADA) and its isoenzymes (ADA1 and ADA2) in saliva in a fast and accurate way, and evaluate the possible changes of these analytes in individuals with SARS-CoV-2 infection. Methods The validation, in addition to the evaluation of precision and accuracy, included the analysis of the effects of the main procedures that are currently being used for SARS-CoV-2 inactivation in saliva and a pilot study to evaluate the possible changes in salivary tADA and isoenzymes in individuals infected with SARS-CoV-2. Results The automated assay proved to be accurate and precise, with intra- and inter-assay coefficients of variation below 8.2%, linearity under dilution linear regression with R2 close to 1, and recovery percentage between 80 and 120% in all cases. This assay was affected when the sample is treated with heat or SDS for virus inactivation but tolerated Triton X-100 and NP-40. Individuals with SARS-CoV-2 infection (n=71) and who recovered from infection (n=11) had higher mean values of activity of tADA and its isoenzymes than healthy individuals (n=35). Conclusions tADA and its isoenzymes ADA1 and ADA2 can be measured accurately and precisely in saliva samples in a rapid, economical, and reproducible way and can be analyzed after chemical inactivation with Triton X-100 and NP-40. Besides, the changes observed in tADA and isoenzymes in individuals with COVID-19 open the possibility of their potential use as non-invasive biomarkers in this disease.


Author(s):  
Clarissa J. Booth ◽  
Stuart Siegfried Lichtenberg ◽  
Richard J. Chappell ◽  
Joel A. Pedersen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomás Pose-Boirazian ◽  
Gemma Eibes ◽  
Natalia Barreiro-Piñeiro ◽  
Cristina Díaz-Jullien ◽  
Juan M. Lema ◽  
...  

AbstractA methodology that programs eukaryotic or bacterial cells to encapsulate proteins of any kind inside micro/nanospheres formed by muNS-Mi viral protein was developed in our laboratory. In the present study such “in cellulo” encapsulation technology is utilized for immobilizing a protein with an enzymatic activity of industrial interest, CotA laccase. The encapsulation facilitates its purification, resulting in a cost-effective, one-step way of producing immobilized enzymes for industrial use. In addition to the ability to be recycled without activity loss, the encapsulated protein showed an increased pH working range and high resistance to chemical inactivation. Also, its activity was almost unaffected after 30 min incubation at 90 °C and 15 min at the almost-boiling temperature of 95 °C. Furthermore, the encapsulated laccase was able to efficiently decolorate the recalcitrant dye RB19 at room temperature.


Author(s):  
Kamal Elouarzaki ◽  
Vishvak Kannan ◽  
Yian Wang ◽  
Adrian C. Fisher ◽  
Jong-Min Lee

We report a chemical inactivation/redox reactivation process (IAP) based on the surface-confined rhodium–porphyrinic catalyst on a multi-walled carbon nanotube surface which presents an excellent and stable electron transfer.


2020 ◽  
Author(s):  
Brad A Haubrich ◽  
Saman Nayyab ◽  
Caroline Williams ◽  
Andrew Whitman ◽  
Tahl Zimmerman ◽  
...  

AbstractDespite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive pathogen Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide fgkc as a narrow spectrum bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 7.8 μM. The diamide inhibited detergent-induced autolysis in a concentration dependent manner indicating peptidoglycan degradation as the mode-of-action. Genetic screening of autolysin mutants suggested LytB, an endo-N-acetylglucosaminidase, involved in cell division as the potential target. Surprisingly, biochemical, and phenotypic analysis contradicted the genetic screen results. Phenotypic studies with the Δlytb strain illustrate the difference between genetic and chemical inactivation of autolysins. These findings suggest that meta-phenotypes including autolytic activity, cell morphology, and genetic screening can be the result of the complex interaction of one or more possible pathways that are connected to cell wall metabolism.


2020 ◽  
Author(s):  
Sumit Mukherjee ◽  
Samrat Moitra ◽  
Wei Xu ◽  
Veronica Hernandez ◽  
Kai Zhang

ABSTRACTSterol 14-α-demethylase (C14DM) is a key enzyme in the biosynthesis of sterols and the primary target of azoles. In Leishmania major, genetic or chemical inactivation of C14DM leads to accumulation of 14-methylated sterol intermediates and profound plasma membrane abnormalities including increased fluidity and failure to maintain ordered membrane microdomains. These defects likely contribute to the hypersensitivity to heat and severely reduced virulence displayed by the C14DM-null mutants (c14dm-). In addition to plasma membrane, sterols are present in intracellular organelles. In this study, we investigated the impact of C14DM ablation on mitochondria. Our results demonstrate that c14dm- mutants have significantly higher mitochondrial membrane potential than wild type parasites. Such high potential leads to the buildup of reactive oxygen species in the mitochondria, especially under nutrient-limiting conditions. Consistent with these mitochondrial alterations, c14dm- mutants show impairment in respiration and are heavily dependent on glucose uptake and glycolysis to generate energy. Consequently, these mutants are extremely sensitive to glucose deprivation and such vulnerability can be rescued through the supplementation of glucose or glycerol. In addition, the accumulation of oxidants may also contribute to the heat sensitivity exhibited by c14dm-. Finally, genetic or chemical ablation of C14DM causes increased susceptibility to pentamidine, an antimicrobial agent with activity against trypanosomatids. In summary, our investigation reveals that alteration of sterol synthesis can negatively affect multiple cellular processes in Leishmania parasites and make them vulnerable to clinically relevant stress conditions.AUTHOR SUMMARYSterols are well recognized for their stabilizing effects on the plasma membrane, but their functions in intracellular organelles are under explored, which hampers the development of sterol synthesis inhibitors as drugs. Our previous studies have demonstrated significant plasma membrane instability in the sterol biosynthetic mutant c14dm- in Leishmania major, a pathogenic protozoan responsible for cutaneous leishmaniasis causing 1-1.5 million infections a year. While the plasma membrane defects have undoubtedly contributed to the reduced virulence exhibited by c14dm- mutants, it was not clear whether other cellular processes were also affected. In this study, we revealed profound mitochondrial dysfunctions and elevated level of reactive oxygen species in c14dm- mutants. These sterol mutants rely heavily on glycolysis to generate energy and are extremely sensitive to glucose restriction. In addition, the accumulation of oxidants appears to be responsible (at least in part) for the previously observed heat sensitivity in c14dm- mutants. Thus, genetic or chemical inactivation of C14DM can influence the functions of cellular organelles beyond the plasma membrane. These findings shed light on the mechanism of action for azole compounds and provide new insight into the roles of sterol biosynthesis in Leishmania parasites.


Sign in / Sign up

Export Citation Format

Share Document